Deep Learning-Based Image Recognition and Quantitative Analysis of Bridge Cracks by

Wenyu Li

Baotou Railway Vocational and Technical College, Baotou, Inner Mongolia, 014060, China

Abstract

With the rapid development of transportation infrastructure, the safety monitoring of bridge structures is crucial, with crack detection being a critical component in assessing the health of bridges. Traditional manual inspection methods are inefficient, subjective, and prone to missed detections, making them unsuitable for the real-time monitoring of large-scale bridges. This study introduces a deep learning-based method for image recognition and quantitative analysis of bridge cracks. By constructing a high-quality dataset of bridge cracks and optimizing the semantic segmentation network structure, the method achieves high-precision recognition and localization of cracks. In terms of quantitative analysis, a model for pixel-level contour extraction and sub-pixel-level parameter calculation is designed. This model combines multi-period image registration technology to analyze the development trends of cracks and establishes an error compensation mechanism to enhance the reliability of the results.

Keywords

bridge cracks; image recognition; quantitative analysis

基于深度学习的桥梁裂缝图像识别与量化分析

李文煜

包头铁道职业技术学院,中国·内蒙古包头014060

摘 要

随着交通基础设施的快速发展,桥梁结构的安全监测至关重要,其中裂缝检测是评估桥梁健康状态的关键环节。传统人工检测方法存在效率低、主观性强、漏检率高等问题,难以满足大规模桥梁的实时监测需求。本研究提出基于深度学习的桥梁裂缝图像识别与量化分析方法,通过构建高质量桥梁裂缝数据集,优化改进语义分割网络结构,实现裂缝的高精度识别与定位。在量化分析层面,设计像素级轮廓提取与亚像素级参数计算模型,结合多期图像配准技术分析裂缝发展趋势,并建立误差补偿机制提升结果可靠性。

关键词

桥梁裂缝;图像识别;量化分析

1引言

桥梁作为现代交通网络的关键节点,其结构安全直接 关系到社会经济发展与人民生命财产安全。长期服役过程 中,桥梁受荷载、环境侵蚀、材料老化等因素影响,易产生 裂缝病害。早期裂缝若未及时发现与处理,可能引发结构性 能退化甚至灾难性事故。据统计,超过60%的桥梁结构失 效与裂缝问题直接相关,因此高效、准确的裂缝检测是桥梁

【基金项目】包头铁道职业技术学院基金课题项目《基于深度学习的铁路桥梁裂缝检测系统设计》(项目编号: BTZY202353)。

【作者简介】李文煜(1984-),男,中国内蒙古五原人,硕士,讲师,从事无人机测绘,数据处理,测绘地理信息研究。

健康监测的核心任务。

传统桥梁裂缝检测主要依赖人工目视检查或接触式测量工具(如裂缝测宽仪),此类方法存在检测效率低、劳动强度大、主观性强等缺陷,且难以发现隐蔽裂缝与微小损伤。随着计算机视觉技术的发展,基于图像处理的非接触式检测方法逐渐兴起,但传统算法(如阈值分割、边缘检测)在复杂光照、背景干扰下检测精度不足,无法满足工程应用需求。深度学习凭借强大的特征学习能力,在图像识别领域取得突破性进展,为桥梁裂缝检测提供了新的技术路径。通过构建深度学习模型实现裂缝的自动识别与量化分析,能够显著提升检测效率与准确性,对保障桥梁安全运营具有重要的理论价值与现实意义。

2 桥梁裂缝检测领域的目前研究现状

近年来,深度学习在桥梁裂缝检测领域的研究持续深入。早期研究多基于卷积神经网络(CNN)进行裂缝二值

分类,实现裂缝的有无判断,但无法满足精细化检测需求。随着语义分割技术的发展,U-Net、DeepLab等网络被引人裂缝检测,通过像素级分类实现裂缝定位与轮廓提取,检测准确率得到显著提升。然而,现有方法仍存在多方面局限性:一是复杂环境下的模型泛化能力不足,如光照变化、水渍干扰导致误检率升高;二是量化分析精度有待提高,传统几何参数计算方法受限于像素精度,难以满足工程测量要求;三是缺乏对裂缝发展趋势的动态分析能力,无法有效预测病害演变规律。

在量化分析研究方面,部分学者通过形态学处理与骨架提取算法计算裂缝几何参数,但亚像素级精度实现困难;在裂缝发展分析中,基于特征点匹配的图像配准方法在桥梁复杂变形场景下误差较大。因此,亟需结合深度学习与先进图像处理技术,构建高精度、鲁棒性强的桥梁裂缝识别与量化分析体系。

3 桥梁裂缝图像特征分析与数据集构建

3.1 桥梁裂缝类型与形态特征

桥梁裂缝按照成因可分为结构性裂缝与非结构性裂缝 两大类。结构性裂缝主要由荷载作用、基础沉降或设计缺陷 引发,常呈现规则走向,如梁体受弯产生的竖向裂缝、桥墩 不均匀沉降导致的斜向裂缝等,此类裂缝直接威胁桥梁承载 能力。非结构性裂缝多因环境因素(如温度变化、混凝土碳 化)或施工缺陷(如振捣不密实)产生,常见于混凝土表面, 形态较为复杂,包含网状裂缝、收缩裂缝等,虽短期内不影 响结构安全,但可能加速钢筋锈蚀。

从几何特征分析, 裂缝宽度是评估其危害程度的关键指标, 裂缝长度与走向同样影响结构安全, 纵向长裂缝可能削弱构件截面强度, 而斜裂缝则与剪切破坏密切相关。此外, 裂缝的分支形态、曲率变化等特征, 也为成因分析提供重要依据。

环境因素对裂缝图像采集产生显著干扰。光照不均会导致裂缝边缘模糊,阴影覆盖易造成漏检;潮湿环境下的水渍、混凝土表面污渍与裂缝纹理相似,易引发误判;桥梁表面涂装、风化剥落等现象,进一步增加了裂缝识别的复杂性。因此,在图像采集与算法设计中需充分考虑环境干扰的影响。

3.2 图像采集与预处理

图像采集设备选型直接影响数据质量。推荐使用高分辨率工业相机,搭配微距镜头,确保裂缝细节清晰;对于高空或复杂结构检测,可采用无人机搭载光学变焦镜头,实现远程非接触式拍摄。拍摄过程需遵循统一规范:保持相机垂直于检测面,控制拍摄距离在0.5-2米范围内,确保图像比例尺一致;在不同光照条件下采用补光设备,避免阴影遮挡。

预处理环节是提升图像质量的关键步骤。去噪处理采 用中值滤波、高斯滤波等算法,消除图像采集过程中的椒盐 噪声与高斯噪声;通过直方图均衡化、自适应对比度增强等 方法,提升裂缝与背景的灰度差异;归一化处理将图像尺寸统一为固定分辨率,并对像素值进行标准化(0-1区间),降低模型计算复杂度。

数据增强技术用于扩充数据集多样性。通过旋转操作(±15°)模拟不同拍摄角度;随机裁剪与缩放操作生成局部裂缝图像,增强模型对裂缝局部特征的识别能力;色彩抖动技术调整图像亮度、对比度与饱和度,模拟不同光照环境;镜像翻转操作增加样本数量,提升模型泛化能力。上述方法可有效缓解训练数据不足问题,避免模型过拟合。

4 桥梁裂缝量化分析方法

4.1 裂缝几何参数提取

4.1.1 像素级裂缝轮廓提取

基于深度学习语义分割结果,通过轮廓检测算法(如 Canny 边缘检测、形态学骨架提取)提取裂缝像素级边缘。针对分割结果中可能存在的孔洞或断裂,采用形态学膨胀、腐蚀操作进行轮廓修复与平滑处理。引入亚像素级边缘定位算法,利用灰度梯度信息将裂缝轮廓精度提升至亚像素级别,增强参数计算准确性。

4.1.2 几何参数计算模型

构建裂缝宽度、长度、面积的计算模型:宽度计算采用垂直于裂缝走向的最小外接矩形短边长度,通过遍历裂缝骨架线各点法线方向的像素距离实现;长度计算利用骨架线像素点累计距离,并通过像素物理尺寸转换为实际长度;面积计算则基于分割结果的像素数量与单像素面积乘积。针对不规则裂缝,采用分区域计算后累加的策略,避免参数低估。

4.1.3 多尺度特征融合

结合裂缝全局形态与局部细节特征,通过图像金字塔或多尺度滑动窗口技术,提取不同尺度下的几何参数。引人注意力机制自适应融合多尺度信息,平衡计算效率与精度,提升复杂形态裂缝的参数提取准确性。

4.2 裂缝发展趋势分析

4.2.1 多期图像配准与对齐

基于特征点匹配(SIFT、ORB)或深度学习配准网络,对不同时期采集的桥梁图像进行空间对齐。针对视角、光照变化导致的差异,采用弹性配准算法修正局部形变,确保裂缝位置与形态的准确对应。建立统一的地理坐标参考系,消除图像采集位置偏差对分析结果的影响。

4.2.2 动态参数建模

构建裂缝扩展动力学模型,通过对比多期图像的几何参数变化,计算裂缝扩展速度(长度/宽度增量与时间比值)与方向(基于骨架线端点位移向量)。引入时间序列分析方法,采用卡尔曼滤波或 LSTM 网络预测裂缝未来发展趋势,结合桥梁结构力学模型评估安全风险等级。

423健康状态分级体系

制定裂缝严重程度分级标准,综合考虑裂缝几何参数、扩展速率及位置敏感性,将桥梁结构健康状态划分为正常、

预警、危险等等级。建立分级阈值动态调整机制,结合桥梁设计参数与历史检测数据优化评判标准,实现精准的健康状态预警。

4.3 误差分析与修正

4.3.1 误差来源解析

系统分析量化误差的主要来源:图像采集环节的视角 畸变、光照不均;算法层面的分割不完整、亚像素定位偏差; 物理转换过程中的像素尺寸标定误差。建立误差传递模型, 量化各因素对最终结果的影响权重。

4.3.2 误差补偿策略

针对图像畸变,采用相机标定参数进行几何校正;通过多光谱图像融合或生成对抗网络(GAN)增强裂缝对比度,减少分割误差。在参数计算阶段,引入误差修正系数(基于标准样本训练得到),对几何参数进行非线性补偿。建立误差反馈机制,通过迭代优化模型参数降低累计误差。

5 提升桥梁裂缝检测的自动化、精确化水平 为目标

提升桥梁裂缝检测的自动化、精确化水平为目标重点 开展以下研究:

5.1 构建多源异构的桥梁裂缝数据集,结合数据增强技术解决样本不足问题

桥梁裂缝数据的多样性与复杂性是制约深度学习模型 泛化能力的关键因素。传统数据集往往存在样本场景单一、 拍摄条件固定的问题,难以覆盖实际工程中光照变化、水渍 干扰、背景复杂等多样化情况。本研究通过多渠道采集数据 构建数据集:利用无人机搭载高清摄像头,从高空视角获取 桥梁整体裂缝分布;采用便携式智能检测设备,在近距离拍 摄裂缝细节图像;同时整合历史检测数据,覆盖不同桥型(梁 桥、拱桥、斜拉桥)、不同材料(混凝土、钢结构)的桥梁 结构。多源数据的融合有效丰富了数据集的样本类型,确保 模型训练能够适应真实场景下的复杂情况。

在数据增强环节,为解决桥梁裂缝样本数量有限的问题,综合运用传统与深度学习增强技术。传统方法包括旋转、缩放、裁剪、翻转等几何变换,以及添加高斯噪声、椒盐噪声、运动模糊等模拟实际拍摄干扰;基于深度学习的增强技术则引入生成对抗网络(GAN),通过训练生成器生成逼真的裂缝图像,其纹理、形态与真实裂缝高度相似。同时,采用 MixUp、CutOut 等数据融合策略,将不同样本的特征进行融合与裁剪,进一步增加样本的多样性。这些数据增强手段不仅扩大了数据集规模,还显著提升了模型对复杂环境的适应能力,为后续高精度检测奠定基础。

5.2 改进深度学习网络结构,引入注意力机制与多尺度特征融合策略,增强复杂环境下的识别能力

针对传统语义分割网络在复杂环境下识别能力不足的问题,本研究对网络结构进行系统性优化。首先,以 U-Net

网络为基础框架,结合桥梁裂缝检测的特点,对编码器与解码器模块进行改进。在编码器部分,引入深度可分离卷积替代传统卷积层,降低模型参数量与计算复杂度,同时保持特征提取能力,使模型更适用于移动端部署;在解码器部分,采用跳跃连接与通道注意力机制相结合的方式,强化浅层特征与深层语义信息的融合,确保裂缝细节与全局结构信息都能得到有效利用。

为进一步提升模型对复杂环境的适应性,引入多尺度特征融合策略。通过构建图像金字塔,在不同分辨率下提取裂缝特征:低分辨率图像有助于捕捉裂缝的整体形态,高分辨率图像则聚焦于细节特征。采用空间金字塔池化(SPP)模块,将不同尺度的特征进行融合,并利用自适应权重分配机制,根据裂缝的大小与复杂程度动态调整各尺度特征的贡献度。此外,结合视觉注意力机制,引导模型重点关注裂缝区域,抑制背景噪声干扰,显著提升在光照不均、水渍覆盖等复杂场景下的识别准确率。

5.3 设计像素级裂缝量化分析模型,实现亚像素级精度的几何参数提取

实现桥梁裂缝的高精度量化分析是评估桥梁健康状态的核心环节。本研究设计的像素级裂缝量化分析模型,突破传统方法在精度上的限制。在裂缝轮廓提取阶段,基于深度学习语义分割结果,采用形态学细化与骨架提取算法获取裂缝的单像素中心线。在此基础上,引入亚像素级边缘定位技术,通过分析裂缝边缘的灰度梯度分布,将轮廓定位精度提升至亚像素级别,有效解决了像素级计算导致的参数误差问题。

5.4 建立基于多期图像的裂缝发展趋势分析框架, 结合误差补偿机制提升结果可靠性

创新点在于将深度学习与高精度量化分析深度融合, 突破传统方法在检测效率与精度上的瓶颈,为桥梁健康监测 提供智能化解决方案。

桥梁裂缝的发展是一个动态过程,通过分析多期检测数据能够有效预测病害演变趋势。本研究建立基于多期图像的裂缝发展趋势分析框架,首先采用深度学习配准网络实现不同时期图像的高精度对齐。传统基于特征点匹配的配准方法在桥梁变形、光照变化场景下容易失效,而深度学习配准网络通过端到端训练,能够自动学习图像间的几何变换关系,实现亚像素级的图像对齐精度。

参老文献

- [1] 一种改进的桥梁裂缝图像滤波算法[J]. 王楹.重庆交通大学学报 (自然科学版),2022(12)
- [2] 基于数字图像处理的沥青路面裂缝识别技术研究[D]. 孙波成.西南交通大学,2015
- [3] 基于数字图像处理的路面裂缝识别方法研究[D]. 马丽莎.东南大学,2018