Teaching Design and Practice of Multi-dimensional Integration of Ideological and Political Education in Middle School Physics Teaching—Taking "Law of Universal Gravitation" as an Example

Yiting Li^{1,3} Bin Li² Jing Pan^{1*}

- 1. School of Physical Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225002, China
- 2. Yangzhou Institute of Educational Sciences, Yangzhou, Jiangsu, 225100, China
- 3. Zhangjiagang Foreign Language School, Suzhou, Jiangsu, 215600, China

Abstract

This study focuses on the content of "Law of Universal Gravitation" in middle school physics, and explores the integration path of ideological and political elements and physical knowledge. By excavating the traditional culture, dialectical materialism and scientific and technological applications contained in the law, ideological and political elements are integrated into teaching in multiple dimensions, and an educational model that attaches equal importance to knowledge imparting and value guidance is constructed. Based on pre-class, in-class and after-class, a teaching plan including links such as introduction, explanation, consolidation, summary and application is designed. Practices show that this model improves students' understanding of physical concepts, enhances the sense of identity with family and country feelings, and provides practical experience and theoretical reference for the ideological and political teaching of middle school physics courses.

Keywords

Middle school physics teaching; Law of Universal Gravitation; Curriculum ideology and politics; Multi-dimensional integration; Teaching design and practice

中学物理教学与课程思政多维融入的教学设计与实践一以 "万有引力定律"为例

李懿婷 1,3 李斌 2 潘靖 1*

- 1. 扬州大学物理科学与技术学院,中国·江苏 扬州 225002
- 2. 扬州市教育科学研究院,中国·江苏 扬州 225100
- 3. 张家港市外国语学校,中国·江苏 苏州 215600

描 亜

本研究聚焦中学物理"万有引力定律"内容,探索思政元素与物理知识的融合路径。通过挖掘定律中蕴含的传统文化、辩证唯物主义思想和科技应用,将思政元素多维度融入教学,构建知识传授与价值引领并重的育人模式。并基于课前、课中、课后设计包含导入、讲解、巩固、总结、应用等环节的教学方案。实践表明,该模式提升了学生对物理概念的理解,增强了家国情怀的认同感,为中学物理课程思政教学提供实践经验与理论参考。

关键词

中学物理教学; 万有引力定律; 课程思政; 多维度融合; 教学设计与实践

【基金项目】江苏省高校"高质量公共课教学改革研究"专项课题(192);大中物理教育衔接工作委员会教学研究课题(项目编号:WX202405);扬州大学卓越本科课程建设工程项目(项目编号:2022ZYKCC-13)资助。

【作者简介】李懿婷(2002-),中国江苏苏州人,本科, 从事高中物理教学研究。

【通讯作者】潘靖(1979-),女,中国江苏扬州人,博士,教授,从事低维纳米材料光、电、磁及催化性质的理论研究和物理教学教法研究。

1引言

在第十四届全国人大三次会议上,大中小学课堂一体 化建设被重点提及。习近平总书记在看望参加政协会议的民 盟民进教育界委员会时强调,建设教育强国、科技强国、人 才强国,必须坚持正确办学方向,培养德智体美劳全面发展 的社会主义建设者和接班人。要以新时代中国特色社会主义 思想铸魂育人,将德育贯穿智育、体育、美育、劳动教育的 全过程。坚持思政课建设与党的创新理论武装同步推进,思 政课程和课程思政同向同行,把思政教育"小课堂"与社会 "大课堂"有效融合,让德育工作开展得更为到位、高效。《关于深化新时代学校思想政治理论课改革创新的若干意见》中也明确指出,要坚持思政课在课程体系中的政治引领和价值引领作用,统筹大中小学思政课一体化建设,推动各类课程与思政课建设形成协同效应。我国的课程思政具有独特的内涵和多元化的实践路径,它将思想政治教育与各类学科深度融合,从基础教育到高等教育,构建起全方位、多层次的教育体系,这种连贯性教育模式,旨在让思想政治教育无处不在,无时不有,实现"立德树人"这一根本目标^[1]。在课程教学中融入中华优秀传统文化、社会主义核心价值观和辩证唯物主义思想是课程思政的有效路径。2016年的全国高校思想政治工作会议上,习近平总书记就提出"要用好课堂教学这个主渠道,思想政治理论课要坚持在改进中加强,使各类课程与思想政治理论课同向同行,形成协同效应。"

物理学是一门以观察和实验为基础,研究自然界物质的基本结构、相互作用和运动规律的自然学科。中学物理不仅是传授科学知识的载体,更是培养学生科学素养、思维方式和价值观的重要课程^[2]。通过"观察一实验—推理—应用",引导学生从现象中抽象本质,在实践中验证理论,最终形成用科学视角认识世界、解决问题的能力,为终身学习和科学精神的塑造奠定基础。中学物理课程思政通过物理知识与思政教育深度融合,在传授科学知识的同时,培养学生的科学精神、家国情怀、社会责任感和辩证思维。本文以"高中物理"课程中"万有引力定律"模块为例,围绕课前、课中、课后三个时段精心设计教学并开展实践,采用问题驱动、案例分析等多样化教学方法,实现知识学习与价值引领的有机统一。

2 中学物理课程思政的现状分析

中学物理课程思政在实施过程中面临多重挑战,下面 我们从教学理念、教师能力培养、课程设计和评价体系这四 个角度进行详细分析。

从教学理念来看,中学物理教学长期以知识传授和解题能力培养为核心,在力学教学中尤为突出,过度关注公式推导与解题技巧训练。对于课程思政,部分教师存在认知偏差,将其窄化为文科专属领域,割裂了学科教学与思政育人的内在联系,未能认识到知识传授与价值引领有机融合的本质属性^[3]。如在讲解"万有引力公式"时,许多教师往往止步于公式推导和解题运用,却忽略牛顿历时二十余年,从天体观测到数学突破,经无数次实验演算才确立定律的艰辛探索历程。这一过程中,既能帮助学生理解公式的诞生背景,更能激发学生科学探索的热情与毅力。

从教学能力和思政素养的培育来看,当下教师培训体系存在结构性失衡。现行的教师培训多聚焦于专业知识更新、教学方法提升等方面,缺乏针对课程思政的系统理论指导,导致教师在思政素材挖掘与运用上的短板^[4]。一方面,教师因缺乏理论储备,难以精准挖掘物理知识背后的思政元素;另一方面,部分教师重视思政融人,却容易陷人"形式化"

的误区,难以实现学科知识传授与价值引领的深度融合。

从课程设计来看,尽管部分教师具有融入思政元素的意识,但素材陈旧与本土化缺失问题突出。比如在力学教学中,多依赖牛顿、开普勒等经典科学家案例,重复性高且缺乏时代感,难以激发学生兴趣。反观现代科技领域,北斗卫星导航系统背后的自主创新精神、"东方红一号"卫星发射到"嫦娥"探月工程所彰显的航天精神,均是极具教育价值的鲜活素材,却鲜少被纳入教学内容。而现行教材未能及时更新此类本土化、时代性案例,限制了课程思政的深度与感染力。

从评价体系来看,现阶段的评价体系仍以学生学业成绩作为核心指标,单一化、结果导向的评价模式致使教学过度关注应试能力培养,课程思政的育人功能被弱化。课程思政效果的内隐性、长效性,难以通过传统量化手段精准评估,由此引发评价标准缺失、听课评课机制不完善等问题,导致教师开展课程思政缺乏科学反馈与有效激励,形成"重分数、轻价值"的循环。

3 以"万有引力定律"为例,融入课程思政的实践探索

在"万有引力定律"的实践教学中,课程思政的融入 打破了生硬灌输的模式,我们通过深入挖掘知识内涵,从中 华传统文化中的宇宙观、辩证唯物主义的科学方法论、科学 家精神的奋斗精神、现代科技的创新成果四个维度,将思政 元素巧妙贯穿于知识讲解的全过程,让学生在潜移默化间受 到思想启迪,真正达成知识传授与价值引领的统一,实现润 物无声的育人目标。

3.1 "万有引力定律"中蕴含的中华传统文化:探寻文明智慧,增强文化自信

中华传统文化中蕴含着丰富的引力现象。如李商隐的 《嫦娥》中"嫦娥应悔偷灵药,碧海青天夜夜心",描绘了 嫦娥居于月宫的场景, 暗含月球受地球引力作用的物理规 律。根据牛顿万有引力定律,地球与月球之间存在相互吸引 的作用力 $F = \frac{GMm}{r^2}$ (其中G为引力常量,M、m分别为地球 和月球质量, r 为地月质心距离), 为月球绕地公转提供向 心力,避免其逃逸至宇宙空间。通过这样的文学分析,学生 对于引力有了初步的认识。在"天体系统的力学平衡"教学 中, 教师可以联系中国古代道家文化中的"阴阳平衡"。根 据牛顿运动定律,月球沿轨道运动需满足 $F_{ij} = F_{in}$,即地球 施加的万有引力 $\frac{GMm}{r^2}$ 与月球圆周运动所需向心力 $\frac{mv^2}{r}$ (v 为 月球公转线速度)相等。地球对月球的万有引力(阳),月 球在既定轨道上运动所需要的向心力(阴),二者的动态平 衡确保了地月系统的稳定运行。这种将传统文化与物理公式 结合的阐述, 既符合天体力学的科学原理, 又实现了自然科 学教育与传统文化传承的深度融合,增强学生对民族文化的 认同感与自豪感。

3.2 "万有引力定律"中蕴含的辩证唯物主义:培 养科学思维,树立正确世界观

在"万有引力定律"教学中,辩证唯物主义思想贯穿理论推导全过程。在万有引力定律公式($F = \frac{GMm}{r^2}$)适用条件的讲解中,质点理想模型的构建本质上是辩证唯物主义中的矛盾分析法:将天体抽象为质点时,需抓住质量与距离这一主要矛盾,而忽略天体形状、自转等次要矛盾 $[^{15.6}]^{666}$ 。在分析引力大小与距离的关系时,当物体之间距离 r 增大时,引力 F 呈平方反比减小;从地球表面到同步轨道,距离量级变化引起引力大小显著变化,进而导致天体运动状态从近地环绕到同步运转的质变,这一过程精准诠释了量变到质变的辩证规律。这种将物理规律与辩证思维深度融合,能培养学生运用辩证方法分析和解决问题的科学素养。

3.3 "万有引力定律"中蕴含的科学家精神: 感悟 榜样力量,培育责任担当

在"万有引力定律"的教学中,科学家精神作为贯穿始终的思想内核,深刻体现了科学探索的本质与价值^[11]。 牛顿创造性地将地面物体的重力与天体运动的向心力统一

为万有引力,其定律表达式 $F = \frac{GMm}{r^2}$ 不仅描述了物体间引力与质量、距离的定量关系,更展现了科学家勇于探索、敢于突破的精神。在实验验证领域,引力常量G的测定是科学探索精神的生动诠释,1789年卡文迪什利用扭秤装置,首次实现了G值的实验测定($6.67 \times 10^{-11} \mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2$),该实验方法开创了微小量测量的范式。这些探索彰显了科研工作者持之以恒、追求极致的科学精神,对培养学生的科学素养提供了鲜活范例。

3.4 "万有引力定律"中蕴含的现代科技: 展现创新成果。激发报国情怀

在"万有引力定律"应用的教学中,现代科技为理论提供了丰富的思政案例 [12]。在航天领域,卫星发射与空间站轨道遵行 $F_{\rm fl}=F_{\rm fl}$ 的动力学平衡原理,即 $G\frac{Mm}{r^2}=m\omega^2r=m\frac{4\pi^2}{T^2}r$ (M为中心天体质量,m为卫星质量,r为轨道半径,v为线速度, ω 为角速度,T为运行周期)。以低地球轨道卫星为例,通过精确计算轨道半径与速度的关系,可实现星箭分离后卫星的稳定人轨;而对于空间站的轨道维持,则需定期启动推进器,通过微小的速度调整补偿大气阻力导致的轨道衰减,确保其持续稳定运行。不仅揭示了万有引力定律在现代科技中的基础支撑作用和航天科技的魅力,更能让学生感受到中国科技自立自强的底气与担当。

4 以"万有引力定律"为例,课程思政融入 教学的课程设计

以"万有引力定律"为例,我们给出了具体的课程思 政教学设计思路(如下表所示),以实现思政教育与物理教 学的有机融合:

教学方法: 教师: 问题导向教学法+案例教学法

学生:探究式学习法+合作学习法+研讨式学习法 教学过程:课前自主合作预习+课中知识讲授+课后 巩固提升

教学分为课前课中课后三个环节,课前教学内容:合作完成导学案内容;课中教学内容:通过问题驱动、合作探究、案例分析等课堂活动将课程思政贯穿教学过程;课后任务拓展:查阅资料,分析一个万有引力定律在相关领域的应用案例

5 教学反思

课堂实践反思: (1)新课引入环节:引入中国传统神 话故事和古诗词,提升学生的文化素养,75%的学生认为 新颖素材更能激发其对物理知识的探索欲望。(2)知识传 授环节:对于物理定律和公式的教学,不仅聚焦学科知识目 标, 更注重挖掘其背后的历史脉络与人文价值, 与传统教学 班级相比,学生对于概念的理解有了明显提升;(3)课堂 练习环节: 摒弃单一的数据计算题型, 以前沿科技成果为 载体设计练习题, 让学生在解决实际问题中提升综合能力, 同时感受国家科技实力,实现知识学习与情感培育的双重提 升。学生在分析实际问题类题目上的平均正确率为71%, 高于常规计算题(59%);课后调查显示,90%的学生认为 科技情境题能增强学习成就感,85%的学生表示此类练习 让他们更关注国家科技发展,有效达成能力培养与情感教育 目标。在教学实践中,以中国传统神话、古诗词导入,以前 沿科技为素材设计练习题, 既弥补了教材中本土化内容不 足,又为育人理念融入物理课堂提供实践范例,有效纠正教 师的认知误区;课程思政的融入,实现了教学评价单一量化 到过程性、反思性及多维育人成效衡量的转变。

6 结语

课程思政作为新时代教育改革的核心举措,是落实立 德树人根本任务的关键路径。本文以力学教学中"万有引力 定律"为例,系统探讨课程思政融人教学的具体路径,并结 合教学实践提出可操作的教学设计方案,通过奋斗故事、定 律应用对国家航天事业发展的支撑等思政元素与教学多维 度融合,实现知识传授与价值引领同频共振。

参考文献

- [1] 刘在英,柳青.课程思政教育融人高中物理教学的探索与实践[J]. 中学物理,2023,41(01):21-24.
- [2] 人民教育出版社. 普通高中教科书 物理 必修 第二册. 北京: 人民教育出版社, 2020.
- [3] 赵勇.中学物理课程资源开发与应用现状分析[J].物理教学探讨,2024,42(11):76-79.
- [4] 姚燕雅,胡积宝,马业万.中学物理课程思政一体化建设研究[J]. 文教资料,2024,(22):69-71.
- [5] 恩格斯. 自然辩证法[M]. 北京: 人民出版社, 2018.
- [6] 陈先达、杨耕. 马克思主义原理[M]. 北京: 人民大学出版 社, 2019.