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Abstract
To address the limitations of traditional dynamic vibration dampers—such as low modeling accuracy, poor optimization efficiency, 
and weak adaptability—a novel “Model-Optimize-Control” integrated solution combining Physically Informed Neural Networks 
(PINNs) is proposed. First, a multi-physics constrained PINN model incorporating material nonlinearities and contact nonlinearities 
is constructed. A hierarchical loss function balances data and physical information, enabling high-precision modeling of nonlinear 
damper systems with minimal data (hundreds of samples) and prediction errors ≤5%. Second, a dynamic precision-adjusting PINN-
NSGA-III multi-objective optimization framework reduces damper optimization cycles from 7-10 days to 1-2 days, achieving global 
optimization of vibration suppression rate, bandwidth, and robustness. Finally, “Structured Pruning + Knowledge Distillation” 
achieves PINN lightweighting (60% parameter reduction, prediction time ≤5 ms), combined with Model Predictive Control (MPC) 
for adaptive control strategy design. Validation on a cantilever beam test bench demonstrates improved vibration suppression rate 
to 45.2%,32.1% effective bandwidth expansion, and performance degradation controlled within 8.7% under parameter fluctuations, 
meeting stringent vibration control requirements for high-end equipment like aero-engines and ultra-precision machine tools.
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基于物理信息神经网络（PINN）动力吸振器性能优化与自
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摘　要

针对传统动力吸振器建模精度低、优化效率差、自适应能力弱的瓶颈，提出一种融合物理信息神经网络（PINN）的 “建
模 - 优化 - 控制” 一体化解决方案。首先，构建含材料非线性与接触非线性的多物理约束 PINN 模型，通过分层损失函数
平衡数据与物理信息，实现少数据（百级样本）下非线性吸振系统的高精度建模（预测误差≤5%）；其次，提出动态精度
调整的	PINN-NSGA-III	多目标优化框架，将吸振器优化周期从 7~10 天缩短至 1~2 天，实现振动抑制率、带宽与鲁棒性的
全局最优；最后，采用 “结构化剪枝 + 知识蒸馏” 实现 PINN 轻量化（参数减少 60%，预测耗时≤5	ms），结合模型预测
控制（MPC）设计自适应控制策略。基于悬臂梁实验台的验证表明，优化后的吸振器振动抑制率提升至	45.2%，有效带宽
扩展	32.1%，参数波动下性能衰减率控制在	8.7%	以内，满足航空发动机、超精密机床等高端装备的宽工况振动控制需求。
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1 引言

动力吸振器作为抑制结构振动的核心装置，广泛应用

于航空航天、精密制造、土木工程等领域 [1]。在航空发动

机转子系统中，高速运转（10000-30000	r/min）产生的不平

衡振动易导致轴承磨损与叶片疲劳；超精密机床（定位精度

≤1	μm）加工时，切削力激励引发的振动直接影响加工精度；

大跨度桥梁在风荷载与交通荷载耦合作用下，传统调谐质量

阻尼器（TMD）因参数固定难以应对宽频随机激励 [2]。

传统动力吸振器设计存在三大局限：① 建模精度低，

依赖线性化动力学模型，忽略材料非线性（如阻尼老化）与

接触非线性（如碰撞阻尼），预测误差常超 15%[3]；② 优

化效率差，多目标优化（振动抑制率、带宽、鲁棒性）依赖 “仿

真 - 实验” 迭代，单次周期长达 7~10 天 [4]；③ 自适应能

力弱，被动吸振器参数固定，半主动控制（如	Skyhook	算法）
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依赖预设规则，无法适配动态工况 [5]。

数据驱动模型（如 CNN、LSTM）虽能提升精度，但

需万级以上标注数据，实验成本高昂（如航空发动机振动实

验单次超 10 万元）[6]。物理信息神经网络（PINN）通过将

物理守恒定律嵌入损失函数，实现 “物理先验 + 数据信息” 

融合建模，在少数据、强约束问题中展现显著优势 [7]。目前，

PINN 在振动控制中多聚焦单一环节（如响应预测），尚未

形成 “建模 - 优化 - 控制” 全流程方案 [8-9]。

本文提出基于 PINN 的动力吸振器一体化方案：① 构

建多物理约束 PINN 模型，提升非线性系统建模精度；② 

融合 PINN 与	NSGA-III	实现高效多目标优化；③ 开发轻量

化 PINN 与自适应控制策略，满足实时控制需求。

2 核心方法

2.1 非线性吸振系统的 PINN 高精度建模

2.1.1	多物理约束构建
针对含磁流变阻尼的多自由度吸振系统，建立耦合非

线性动力学方程：

③ 自适应能力弱，被动吸振器参数固定，半主动控制（如 Skyhook 算法）依赖预设规则，无法

适配动态工况 [5]。

数据驱动模型（如 CNN、LSTM）虽能提升精度，但需万级以上标注数据，实验成本高昂（如

航空发动机振动实验单次超 10 万元）[6]。物理信息神经网络（PINN）通过将物理守恒定律嵌入

损失函数，实现 “物理先验 + 数据信息” 融合建模，在少数据、强约束问题中展现显著优势

[7]。目前，PINN 在振动控制中多聚焦单一环节（如响应预测），尚未形成 “建模 - 优化 - 控

制” 全流程方案 [8-9]。

本文提出基于 PINN 的动力吸振器一体化方案：① 构建多物理约束 PINN 模型，提升非线性

系统建模精度；② 融合 PINN 与 NSGA-III 实现高效多目标优化；③ 开发轻量化 PINN 与自适

应控制策略，满足实时控制需求。

2 核心方法

2.1 非线性吸振系统的 PINN 高精度建模

2.1.1 多物理约束构建

针对含磁流变阻尼的多自由度吸振系统，建立耦合非线性动力学方程：

Mx� + C x� + K T x = FMR x� , I + Fexc t
其中，M 为质量矩阵，C x� 为含 Hertz 碰撞模型的非线性阻尼矩阵，K(T)为温度依赖刚度矩

阵（基于 Bingham 流体本构关系），Fexc(t)为激励力，FMR为磁流变阻尼力（与速度x�、电流 I 相

关）。

将全局方程拆解为局部约束：① 转子截面动力学平衡（二阶常微分方程，ODE）；② 磁流变

阻尼力 - 速度关联（代数约束）；③ 刚度 - 温度动态关系（一阶 ODE），形成 PINN 可嵌入的

约束集。

2.1.2 分层损失函数设计

构建 “数据 - 物理 - 边界” 三层损失函数，平衡多源信息：

�� = �� + 1ℎ  + 2
其中：数据拟合损失 Ldata：最小化 PINN 预测位移x�与实验数据xexp的均方误差，确保模型贴

合实际；

物理约束损失 ℎ ：计算局部微分方程残差的 L2 范数，强制模型遵循物理规律；

边界损失 ：约束初始条件 � 0 = 0, �� 0 = 0 与固定端位移边界 �  = 0,  = 0 ，避

免 “物理不合理” 解。

采用梯度贡献度自适应权重调整1、2：若物理约束残差过大，自动增大1；若边界条件不满

足，提升2，确保训练收敛。

2.2 PINN-NSGA-III 多目标优化框架

2.2.1 优化目标与变量

以 “振动抑制率η（主系统振幅降低率）最大化、有效带宽∆f（吸振有效频率范围）最大化、

参数波动下性能衰减率δ（质量 / 刚度 ±10% 时性能变化）最小化” 为目标，优化变量为吸振

器质量 m（0.1~5 kg）、刚度 k（10³~10⁵ N/m）、磁流变阻尼器初始阻尼 c（1~100 N・s/m），优

化函数为：

�  = −,∆, .   ∈ ., , ∈ , ,  ∈ ,
2.2.2 动态精度优化策略

将 PINN 作为性能预测器替代传统有限元仿真，提出 “探索 - 利用” 分阶段优化：

1.探索阶段：采用低精度 PINN（3 层隐藏层，50 神经元 / 层）快速筛选参数空间，保留

50% 潜在最优解，降低计算成本；

x t , x� t C T = c0 1 −αT T − T0

其中，M 为质量矩阵，

③ 自适应能力弱，被动吸振器参数固定，半主动控制（如 Skyhook 算法）依赖预设规则，无法

适配动态工况 [5]。

数据驱动模型（如 CNN、LSTM）虽能提升精度，但需万级以上标注数据，实验成本高昂（如

航空发动机振动实验单次超 10 万元）[6]。物理信息神经网络（PINN）通过将物理守恒定律嵌入

损失函数，实现 “物理先验 + 数据信息” 融合建模，在少数据、强约束问题中展现显著优势

[7]。目前，PINN 在振动控制中多聚焦单一环节（如响应预测），尚未形成 “建模 - 优化 - 控

制” 全流程方案 [8-9]。

本文提出基于 PINN 的动力吸振器一体化方案：① 构建多物理约束 PINN 模型，提升非线性

系统建模精度；② 融合 PINN 与 NSGA-III 实现高效多目标优化；③ 开发轻量化 PINN 与自适

应控制策略，满足实时控制需求。

2 核心方法

2.1 非线性吸振系统的 PINN 高精度建模

2.1.1 多物理约束构建

针对含磁流变阻尼的多自由度吸振系统，建立耦合非线性动力学方程：

Mx� + C x� + K T x = FMR x� , I + Fexc t
其中，M 为质量矩阵，C x� 为含 Hertz 碰撞模型的非线性阻尼矩阵，K(T)为温度依赖刚度矩

阵（基于 Bingham 流体本构关系），Fexc(t)为激励力，FMR为磁流变阻尼力（与速度x�、电流 I 相

关）。

将全局方程拆解为局部约束：① 转子截面动力学平衡（二阶常微分方程，ODE）；② 磁流变

阻尼力 - 速度关联（代数约束）；③ 刚度 - 温度动态关系（一阶 ODE），形成 PINN 可嵌入的

约束集。

2.1.2 分层损失函数设计

构建 “数据 - 物理 - 边界” 三层损失函数，平衡多源信息：

�� = �� + 1ℎ  + 2
其中：数据拟合损失 Ldata：最小化 PINN 预测位移x�与实验数据xexp的均方误差，确保模型贴

合实际；

物理约束损失 ℎ ：计算局部微分方程残差的 L2 范数，强制模型遵循物理规律；

边界损失 ：约束初始条件 � 0 = 0, �� 0 = 0 与固定端位移边界 �  = 0,  = 0 ，避

免 “物理不合理” 解。

采用梯度贡献度自适应权重调整1、2：若物理约束残差过大，自动增大1；若边界条件不满

足，提升2，确保训练收敛。

2.2 PINN-NSGA-III 多目标优化框架

2.2.1 优化目标与变量

以 “振动抑制率η（主系统振幅降低率）最大化、有效带宽∆f（吸振有效频率范围）最大化、

参数波动下性能衰减率δ（质量 / 刚度 ±10% 时性能变化）最小化” 为目标，优化变量为吸振

器质量 m（0.1~5 kg）、刚度 k（10³~10⁵ N/m）、磁流变阻尼器初始阻尼 c（1~100 N・s/m），优

化函数为：

�  = −,∆, .   ∈ ., , ∈ , ,  ∈ ,
2.2.2 动态精度优化策略

将 PINN 作为性能预测器替代传统有限元仿真，提出 “探索 - 利用” 分阶段优化：

1.探索阶段：采用低精度 PINN（3 层隐藏层，50 神经元 / 层）快速筛选参数空间，保留

50% 潜在最优解，降低计算成本；

x t , x� t C T = c0 1 −αT T − T0

为含	Hertz	碰撞模型的非

线性阻尼矩阵，K(T) 为温度依赖刚度矩阵（基于	Bingham	

流体本构关系），Fexc(t) 为激励力，FMR 为磁流变阻尼力（与

速度

③ 自适应能力弱，被动吸振器参数固定，半主动控制（如 Skyhook 算法）依赖预设规则，无法

适配动态工况 [5]。

数据驱动模型（如 CNN、LSTM）虽能提升精度，但需万级以上标注数据，实验成本高昂（如

航空发动机振动实验单次超 10 万元）[6]。物理信息神经网络（PINN）通过将物理守恒定律嵌入

损失函数，实现 “物理先验 + 数据信息” 融合建模，在少数据、强约束问题中展现显著优势

[7]。目前，PINN 在振动控制中多聚焦单一环节（如响应预测），尚未形成 “建模 - 优化 - 控

制” 全流程方案 [8-9]。

本文提出基于 PINN 的动力吸振器一体化方案：① 构建多物理约束 PINN 模型，提升非线性

系统建模精度；② 融合 PINN 与 NSGA-III 实现高效多目标优化；③ 开发轻量化 PINN 与自适

应控制策略，满足实时控制需求。

2 核心方法

2.1 非线性吸振系统的 PINN 高精度建模

2.1.1 多物理约束构建

针对含磁流变阻尼的多自由度吸振系统，建立耦合非线性动力学方程：

Mx� + C x� + K T x = FMR x� , I + Fexc t
其中，M 为质量矩阵，C x� 为含 Hertz 碰撞模型的非线性阻尼矩阵，K(T)为温度依赖刚度矩

阵（基于 Bingham 流体本构关系），Fexc(t)为激励力，FMR为磁流变阻尼力（与速度x�、电流 I 相

关）。

将全局方程拆解为局部约束：① 转子截面动力学平衡（二阶常微分方程，ODE）；② 磁流变

阻尼力 - 速度关联（代数约束）；③ 刚度 - 温度动态关系（一阶 ODE），形成 PINN 可嵌入的

约束集。

2.1.2 分层损失函数设计

构建 “数据 - 物理 - 边界” 三层损失函数，平衡多源信息：

�� = �� + 1ℎ  + 2
其中：数据拟合损失 Ldata：最小化 PINN 预测位移x�与实验数据xexp的均方误差，确保模型贴

合实际；

物理约束损失 ℎ ：计算局部微分方程残差的 L2 范数，强制模型遵循物理规律；

边界损失 ：约束初始条件 � 0 = 0, �� 0 = 0 与固定端位移边界 �  = 0,  = 0 ，避

免 “物理不合理” 解。

采用梯度贡献度自适应权重调整1、2：若物理约束残差过大，自动增大1；若边界条件不满

足，提升2，确保训练收敛。

2.2 PINN-NSGA-III 多目标优化框架

2.2.1 优化目标与变量

以 “振动抑制率η（主系统振幅降低率）最大化、有效带宽∆f（吸振有效频率范围）最大化、

参数波动下性能衰减率δ（质量 / 刚度 ±10% 时性能变化）最小化” 为目标，优化变量为吸振

器质量 m（0.1~5 kg）、刚度 k（10³~10⁵ N/m）、磁流变阻尼器初始阻尼 c（1~100 N・s/m），优

化函数为：

�  = −,∆, .   ∈ ., , ∈ , ,  ∈ ,
2.2.2 动态精度优化策略

将 PINN 作为性能预测器替代传统有限元仿真，提出 “探索 - 利用” 分阶段优化：

1.探索阶段：采用低精度 PINN（3 层隐藏层，50 神经元 / 层）快速筛选参数空间，保留

50% 潜在最优解，降低计算成本；

x t , x� t C T = c0 1 −αT T − T0

、电流 I 相关）。

将全局方程拆解为局部约束：① 转子截面动力学平衡

（二阶常微分方程，ODE）；② 磁流变阻尼力 - 速度关联

（代数约束）；③ 刚度 - 温度动态关系（一阶	ODE），形

成 PINN 可嵌入的约束集。

2.1.2	分层损失函数设计
构建 “数据 - 物理 - 边界” 三层损失函数，平衡多源

信息：

③ 自适应能力弱，被动吸振器参数固定，半主动控制（如 Skyhook 算法）依赖预设规则，无法

适配动态工况 [5]。

数据驱动模型（如 CNN、LSTM）虽能提升精度，但需万级以上标注数据，实验成本高昂（如

航空发动机振动实验单次超 10 万元）[6]。物理信息神经网络（PINN）通过将物理守恒定律嵌入

损失函数，实现 “物理先验 + 数据信息” 融合建模，在少数据、强约束问题中展现显著优势

[7]。目前，PINN 在振动控制中多聚焦单一环节（如响应预测），尚未形成 “建模 - 优化 - 控

制” 全流程方案 [8-9]。

本文提出基于 PINN 的动力吸振器一体化方案：① 构建多物理约束 PINN 模型，提升非线性

系统建模精度；② 融合 PINN 与 NSGA-III 实现高效多目标优化；③ 开发轻量化 PINN 与自适

应控制策略，满足实时控制需求。

2 核心方法

2.1 非线性吸振系统的 PINN 高精度建模

2.1.1 多物理约束构建

针对含磁流变阻尼的多自由度吸振系统，建立耦合非线性动力学方程：

Mx� + C x� + K T x = FMR x� , I + Fexc t
其中，M 为质量矩阵，C x� 为含 Hertz 碰撞模型的非线性阻尼矩阵，K(T)为温度依赖刚度矩

阵（基于 Bingham 流体本构关系），Fexc(t)为激励力，FMR为磁流变阻尼力（与速度x�、电流 I 相

关）。

将全局方程拆解为局部约束：① 转子截面动力学平衡（二阶常微分方程，ODE）；② 磁流变

阻尼力 - 速度关联（代数约束）；③ 刚度 - 温度动态关系（一阶 ODE），形成 PINN 可嵌入的

约束集。

2.1.2 分层损失函数设计

构建 “数据 - 物理 - 边界” 三层损失函数，平衡多源信息：

�� = �� + 1ℎ  + 2
其中：数据拟合损失 Ldata：最小化 PINN 预测位移x�与实验数据xexp的均方误差，确保模型贴

合实际；

物理约束损失 ℎ ：计算局部微分方程残差的 L2 范数，强制模型遵循物理规律；

边界损失 ：约束初始条件 � 0 = 0, �� 0 = 0 与固定端位移边界 �  = 0,  = 0 ，避

免 “物理不合理” 解。

采用梯度贡献度自适应权重调整1、2：若物理约束残差过大，自动增大1；若边界条件不满

足，提升2，确保训练收敛。

2.2 PINN-NSGA-III 多目标优化框架

2.2.1 优化目标与变量

以 “振动抑制率η（主系统振幅降低率）最大化、有效带宽∆f（吸振有效频率范围）最大化、

参数波动下性能衰减率δ（质量 / 刚度 ±10% 时性能变化）最小化” 为目标，优化变量为吸振

器质量 m（0.1~5 kg）、刚度 k（10³~10⁵ N/m）、磁流变阻尼器初始阻尼 c（1~100 N・s/m），优

化函数为：

�  = −,∆, .   ∈ ., , ∈ , ,  ∈ ,
2.2.2 动态精度优化策略

将 PINN 作为性能预测器替代传统有限元仿真，提出 “探索 - 利用” 分阶段优化：

1.探索阶段：采用低精度 PINN（3 层隐藏层，50 神经元 / 层）快速筛选参数空间，保留

50% 潜在最优解，降低计算成本；

x t , x� t C T = c0 1 −αT T − T0

其中：数据拟合损失

③ 自适应能力弱，被动吸振器参数固定，半主动控制（如 Skyhook 算法）依赖预设规则，无法

适配动态工况 [5]。

数据驱动模型（如 CNN、LSTM）虽能提升精度，但需万级以上标注数据，实验成本高昂（如

航空发动机振动实验单次超 10 万元）[6]。物理信息神经网络（PINN）通过将物理守恒定律嵌入

损失函数，实现 “物理先验 + 数据信息” 融合建模，在少数据、强约束问题中展现显著优势

[7]。目前，PINN 在振动控制中多聚焦单一环节（如响应预测），尚未形成 “建模 - 优化 - 控

制” 全流程方案 [8-9]。

本文提出基于 PINN 的动力吸振器一体化方案：① 构建多物理约束 PINN 模型，提升非线性

系统建模精度；② 融合 PINN 与 NSGA-III 实现高效多目标优化；③ 开发轻量化 PINN 与自适

应控制策略，满足实时控制需求。

2 核心方法

2.1 非线性吸振系统的 PINN 高精度建模

2.1.1 多物理约束构建

针对含磁流变阻尼的多自由度吸振系统，建立耦合非线性动力学方程：

Mx� + C x� + K T x = FMR x� , I + Fexc t
其中，M 为质量矩阵，C x� 为含 Hertz 碰撞模型的非线性阻尼矩阵，K(T)为温度依赖刚度矩

阵（基于 Bingham 流体本构关系），Fexc(t)为激励力，FMR为磁流变阻尼力（与速度x�、电流 I 相

关）。

将全局方程拆解为局部约束：① 转子截面动力学平衡（二阶常微分方程，ODE）；② 磁流变

阻尼力 - 速度关联（代数约束）；③ 刚度 - 温度动态关系（一阶 ODE），形成 PINN 可嵌入的

约束集。

2.1.2 分层损失函数设计

构建 “数据 - 物理 - 边界” 三层损失函数，平衡多源信息：

�� = �� + 1ℎ  + 2
其中：数据拟合损失 Ldata：最小化 PINN 预测位移x�与实验数据xexp的均方误差，确保模型贴

合实际；

物理约束损失 ℎ ：计算局部微分方程残差的 L2 范数，强制模型遵循物理规律；

边界损失 ：约束初始条件 � 0 = 0, �� 0 = 0 与固定端位移边界 �  = 0,  = 0 ，避

免 “物理不合理” 解。

采用梯度贡献度自适应权重调整1、2：若物理约束残差过大，自动增大1；若边界条件不满

足，提升2，确保训练收敛。

2.2 PINN-NSGA-III 多目标优化框架

2.2.1 优化目标与变量

以 “振动抑制率η（主系统振幅降低率）最大化、有效带宽∆f（吸振有效频率范围）最大化、

参数波动下性能衰减率δ（质量 / 刚度 ±10% 时性能变化）最小化” 为目标，优化变量为吸振

器质量 m（0.1~5 kg）、刚度 k（10³~10⁵ N/m）、磁流变阻尼器初始阻尼 c（1~100 N・s/m），优

化函数为：

�  = −,∆, .   ∈ ., , ∈ , ,  ∈ ,
2.2.2 动态精度优化策略

将 PINN 作为性能预测器替代传统有限元仿真，提出 “探索 - 利用” 分阶段优化：

1.探索阶段：采用低精度 PINN（3 层隐藏层，50 神经元 / 层）快速筛选参数空间，保留

50% 潜在最优解，降低计算成本；

x t , x� t C T = c0 1 −αT T − T0

 ：最小化 PINN 预测位移
与实验数据 xexp 的均方误差，确保模型贴合实际；

物理约束损失

③ 自适应能力弱，被动吸振器参数固定，半主动控制（如 Skyhook 算法）依赖预设规则，无法

适配动态工况 [5]。

数据驱动模型（如 CNN、LSTM）虽能提升精度，但需万级以上标注数据，实验成本高昂（如

航空发动机振动实验单次超 10 万元）[6]。物理信息神经网络（PINN）通过将物理守恒定律嵌入

损失函数，实现 “物理先验 + 数据信息” 融合建模，在少数据、强约束问题中展现显著优势

[7]。目前，PINN 在振动控制中多聚焦单一环节（如响应预测），尚未形成 “建模 - 优化 - 控

制” 全流程方案 [8-9]。

本文提出基于 PINN 的动力吸振器一体化方案：① 构建多物理约束 PINN 模型，提升非线性

系统建模精度；② 融合 PINN 与 NSGA-III 实现高效多目标优化；③ 开发轻量化 PINN 与自适

应控制策略，满足实时控制需求。

2 核心方法

2.1 非线性吸振系统的 PINN 高精度建模

2.1.1 多物理约束构建

针对含磁流变阻尼的多自由度吸振系统，建立耦合非线性动力学方程：

Mx� + C x� + K T x = FMR x� , I + Fexc t
其中，M 为质量矩阵，C x� 为含 Hertz 碰撞模型的非线性阻尼矩阵，K(T)为温度依赖刚度矩

阵（基于 Bingham 流体本构关系），Fexc(t)为激励力，FMR为磁流变阻尼力（与速度x�、电流 I 相

关）。

将全局方程拆解为局部约束：① 转子截面动力学平衡（二阶常微分方程，ODE）；② 磁流变

阻尼力 - 速度关联（代数约束）；③ 刚度 - 温度动态关系（一阶 ODE），形成 PINN 可嵌入的

约束集。

2.1.2 分层损失函数设计

构建 “数据 - 物理 - 边界” 三层损失函数，平衡多源信息：

�� = �� + 1ℎ  + 2
其中：数据拟合损失 Ldata：最小化 PINN 预测位移x�与实验数据xexp的均方误差，确保模型贴

合实际；

物理约束损失 ℎ ：计算局部微分方程残差的 L2 范数，强制模型遵循物理规律；

边界损失 ：约束初始条件 � 0 = 0, �� 0 = 0 与固定端位移边界 �  = 0,  = 0 ，避

免 “物理不合理” 解。

采用梯度贡献度自适应权重调整1、2：若物理约束残差过大，自动增大1；若边界条件不满

足，提升2，确保训练收敛。

2.2 PINN-NSGA-III 多目标优化框架

2.2.1 优化目标与变量

以 “振动抑制率η（主系统振幅降低率）最大化、有效带宽∆f（吸振有效频率范围）最大化、

参数波动下性能衰减率δ（质量 / 刚度 ±10% 时性能变化）最小化” 为目标，优化变量为吸振

器质量 m（0.1~5 kg）、刚度 k（10³~10⁵ N/m）、磁流变阻尼器初始阻尼 c（1~100 N・s/m），优

化函数为：

�  = −,∆, .   ∈ ., , ∈ , ,  ∈ ,
2.2.2 动态精度优化策略

将 PINN 作为性能预测器替代传统有限元仿真，提出 “探索 - 利用” 分阶段优化：

1.探索阶段：采用低精度 PINN（3 层隐藏层，50 神经元 / 层）快速筛选参数空间，保留

50% 潜在最优解，降低计算成本；

x t , x� t C T = c0 1 −αT T − T0

 ：计算局部微分方程残差的L2范数，

强制模型遵循物理规律；

边界损失

③ 自适应能力弱，被动吸振器参数固定，半主动控制（如 Skyhook 算法）依赖预设规则，无法

适配动态工况 [5]。

数据驱动模型（如 CNN、LSTM）虽能提升精度，但需万级以上标注数据，实验成本高昂（如

航空发动机振动实验单次超 10 万元）[6]。物理信息神经网络（PINN）通过将物理守恒定律嵌入

损失函数，实现 “物理先验 + 数据信息” 融合建模，在少数据、强约束问题中展现显著优势

[7]。目前，PINN 在振动控制中多聚焦单一环节（如响应预测），尚未形成 “建模 - 优化 - 控

制” 全流程方案 [8-9]。

本文提出基于 PINN 的动力吸振器一体化方案：① 构建多物理约束 PINN 模型，提升非线性

系统建模精度；② 融合 PINN 与 NSGA-III 实现高效多目标优化；③ 开发轻量化 PINN 与自适

应控制策略，满足实时控制需求。

2 核心方法

2.1 非线性吸振系统的 PINN 高精度建模

2.1.1 多物理约束构建

针对含磁流变阻尼的多自由度吸振系统，建立耦合非线性动力学方程：

Mx� + C x� + K T x = FMR x� , I + Fexc t
其中，M 为质量矩阵，C x� 为含 Hertz 碰撞模型的非线性阻尼矩阵，K(T)为温度依赖刚度矩

阵（基于 Bingham 流体本构关系），Fexc(t)为激励力，FMR为磁流变阻尼力（与速度x�、电流 I 相

关）。

将全局方程拆解为局部约束：① 转子截面动力学平衡（二阶常微分方程，ODE）；② 磁流变

阻尼力 - 速度关联（代数约束）；③ 刚度 - 温度动态关系（一阶 ODE），形成 PINN 可嵌入的

约束集。

2.1.2 分层损失函数设计

构建 “数据 - 物理 - 边界” 三层损失函数，平衡多源信息：

�� = �� + 1ℎ  + 2
其中：数据拟合损失 Ldata：最小化 PINN 预测位移x�与实验数据xexp的均方误差，确保模型贴

合实际；

物理约束损失 ℎ ：计算局部微分方程残差的 L2 范数，强制模型遵循物理规律；

边界损失 ：约束初始条件 � 0 = 0, �� 0 = 0 与固定端位移边界 �  = 0,  = 0 ，避

免 “物理不合理” 解。

采用梯度贡献度自适应权重调整1、2：若物理约束残差过大，自动增大1；若边界条件不满

足，提升2，确保训练收敛。

2.2 PINN-NSGA-III 多目标优化框架

2.2.1 优化目标与变量

以 “振动抑制率η（主系统振幅降低率）最大化、有效带宽∆f（吸振有效频率范围）最大化、

参数波动下性能衰减率δ（质量 / 刚度 ±10% 时性能变化）最小化” 为目标，优化变量为吸振

器质量 m（0.1~5 kg）、刚度 k（10³~10⁵ N/m）、磁流变阻尼器初始阻尼 c（1~100 N・s/m），优

化函数为：

�  = −,∆, .   ∈ ., , ∈ , ,  ∈ ,
2.2.2 动态精度优化策略

将 PINN 作为性能预测器替代传统有限元仿真，提出 “探索 - 利用” 分阶段优化：

1.探索阶段：采用低精度 PINN（3 层隐藏层，50 神经元 / 层）快速筛选参数空间，保留

50% 潜在最优解，降低计算成本；

x t , x� t C T = c0 1 −αT T − T0

：约束初始条件

③ 自适应能力弱，被动吸振器参数固定，半主动控制（如 Skyhook 算法）依赖预设规则，无法

适配动态工况 [5]。

数据驱动模型（如 CNN、LSTM）虽能提升精度，但需万级以上标注数据，实验成本高昂（如

航空发动机振动实验单次超 10 万元）[6]。物理信息神经网络（PINN）通过将物理守恒定律嵌入

损失函数，实现 “物理先验 + 数据信息” 融合建模，在少数据、强约束问题中展现显著优势

[7]。目前，PINN 在振动控制中多聚焦单一环节（如响应预测），尚未形成 “建模 - 优化 - 控

制” 全流程方案 [8-9]。

本文提出基于 PINN 的动力吸振器一体化方案：① 构建多物理约束 PINN 模型，提升非线性

系统建模精度；② 融合 PINN 与 NSGA-III 实现高效多目标优化；③ 开发轻量化 PINN 与自适

应控制策略，满足实时控制需求。

2 核心方法

2.1 非线性吸振系统的 PINN 高精度建模

2.1.1 多物理约束构建

针对含磁流变阻尼的多自由度吸振系统，建立耦合非线性动力学方程：

Mx� + C x� + K T x = FMR x� , I + Fexc t
其中，M 为质量矩阵，C x� 为含 Hertz 碰撞模型的非线性阻尼矩阵，K(T)为温度依赖刚度矩

阵（基于 Bingham 流体本构关系），Fexc(t)为激励力，FMR为磁流变阻尼力（与速度x�、电流 I 相

关）。

将全局方程拆解为局部约束：① 转子截面动力学平衡（二阶常微分方程，ODE）；② 磁流变

阻尼力 - 速度关联（代数约束）；③ 刚度 - 温度动态关系（一阶 ODE），形成 PINN 可嵌入的

约束集。

2.1.2 分层损失函数设计

构建 “数据 - 物理 - 边界” 三层损失函数，平衡多源信息：

�� = �� + 1ℎ  + 2
其中：数据拟合损失 Ldata：最小化 PINN 预测位移x�与实验数据xexp的均方误差，确保模型贴

合实际；

物理约束损失 ℎ ：计算局部微分方程残差的 L2 范数，强制模型遵循物理规律；

边界损失 ：约束初始条件 � 0 = 0, �� 0 = 0 与固定端位移边界 �  = 0,  = 0 ，避

免 “物理不合理” 解。

采用梯度贡献度自适应权重调整1、2：若物理约束残差过大，自动增大1；若边界条件不满

足，提升2，确保训练收敛。

2.2 PINN-NSGA-III 多目标优化框架

2.2.1 优化目标与变量

以 “振动抑制率η（主系统振幅降低率）最大化、有效带宽∆f（吸振有效频率范围）最大化、

参数波动下性能衰减率δ（质量 / 刚度 ±10% 时性能变化）最小化” 为目标，优化变量为吸振

器质量 m（0.1~5 kg）、刚度 k（10³~10⁵ N/m）、磁流变阻尼器初始阻尼 c（1~100 N・s/m），优

化函数为：

�  = −,∆, .   ∈ ., , ∈ , ,  ∈ ,
2.2.2 动态精度优化策略

将 PINN 作为性能预测器替代传统有限元仿真，提出 “探索 - 利用” 分阶段优化：

1.探索阶段：采用低精度 PINN（3 层隐藏层，50 神经元 / 层）快速筛选参数空间，保留

50% 潜在最优解，降低计算成本；

x t , x� t C T = c0 1 −αT T − T0

与固定端位移边界

③ 自适应能力弱，被动吸振器参数固定，半主动控制（如 Skyhook 算法）依赖预设规则，无法

适配动态工况 [5]。

数据驱动模型（如 CNN、LSTM）虽能提升精度，但需万级以上标注数据，实验成本高昂（如

航空发动机振动实验单次超 10 万元）[6]。物理信息神经网络（PINN）通过将物理守恒定律嵌入

损失函数，实现 “物理先验 + 数据信息” 融合建模，在少数据、强约束问题中展现显著优势

[7]。目前，PINN 在振动控制中多聚焦单一环节（如响应预测），尚未形成 “建模 - 优化 - 控

制” 全流程方案 [8-9]。

本文提出基于 PINN 的动力吸振器一体化方案：① 构建多物理约束 PINN 模型，提升非线性

系统建模精度；② 融合 PINN 与 NSGA-III 实现高效多目标优化；③ 开发轻量化 PINN 与自适

应控制策略，满足实时控制需求。

2 核心方法

2.1 非线性吸振系统的 PINN 高精度建模

2.1.1 多物理约束构建

针对含磁流变阻尼的多自由度吸振系统，建立耦合非线性动力学方程：

Mx� + C x� + K T x = FMR x� , I + Fexc t
其中，M 为质量矩阵，C x� 为含 Hertz 碰撞模型的非线性阻尼矩阵，K(T)为温度依赖刚度矩

阵（基于 Bingham 流体本构关系），Fexc(t)为激励力，FMR为磁流变阻尼力（与速度x�、电流 I 相

关）。

将全局方程拆解为局部约束：① 转子截面动力学平衡（二阶常微分方程，ODE）；② 磁流变

阻尼力 - 速度关联（代数约束）；③ 刚度 - 温度动态关系（一阶 ODE），形成 PINN 可嵌入的

约束集。

2.1.2 分层损失函数设计

构建 “数据 - 物理 - 边界” 三层损失函数，平衡多源信息：

�� = �� + 1ℎ  + 2
其中：数据拟合损失 Ldata：最小化 PINN 预测位移x�与实验数据xexp的均方误差，确保模型贴

合实际；

物理约束损失 ℎ ：计算局部微分方程残差的 L2 范数，强制模型遵循物理规律；

边界损失 ：约束初始条件 � 0 = 0, �� 0 = 0 与固定端位移边界 �  = 0,  = 0 ，避

免 “物理不合理” 解。

采用梯度贡献度自适应权重调整1、2：若物理约束残差过大，自动增大1；若边界条件不满

足，提升2，确保训练收敛。

2.2 PINN-NSGA-III 多目标优化框架

2.2.1 优化目标与变量

以 “振动抑制率η（主系统振幅降低率）最大化、有效带宽∆f（吸振有效频率范围）最大化、

参数波动下性能衰减率δ（质量 / 刚度 ±10% 时性能变化）最小化” 为目标，优化变量为吸振

器质量 m（0.1~5 kg）、刚度 k（10³~10⁵ N/m）、磁流变阻尼器初始阻尼 c（1~100 N・s/m），优

化函数为：

�  = −,∆, .   ∈ ., , ∈ , ,  ∈ ,
2.2.2 动态精度优化策略

将 PINN 作为性能预测器替代传统有限元仿真，提出 “探索 - 利用” 分阶段优化：

1.探索阶段：采用低精度 PINN（3 层隐藏层，50 神经元 / 层）快速筛选参数空间，保留

50% 潜在最优解，降低计算成本；

x t , x� t C T = c0 1 −αT T − T0

，避免 “物理不合理” 解。

采用梯度贡献度自适应权重调整

③ 自适应能力弱，被动吸振器参数固定，半主动控制（如 Skyhook 算法）依赖预设规则，无法

适配动态工况 [5]。

数据驱动模型（如 CNN、LSTM）虽能提升精度，但需万级以上标注数据，实验成本高昂（如

航空发动机振动实验单次超 10 万元）[6]。物理信息神经网络（PINN）通过将物理守恒定律嵌入

损失函数，实现 “物理先验 + 数据信息” 融合建模，在少数据、强约束问题中展现显著优势

[7]。目前，PINN 在振动控制中多聚焦单一环节（如响应预测），尚未形成 “建模 - 优化 - 控

制” 全流程方案 [8-9]。

本文提出基于 PINN 的动力吸振器一体化方案：① 构建多物理约束 PINN 模型，提升非线性

系统建模精度；② 融合 PINN 与 NSGA-III 实现高效多目标优化；③ 开发轻量化 PINN 与自适

应控制策略，满足实时控制需求。

2 核心方法

2.1 非线性吸振系统的 PINN 高精度建模

2.1.1 多物理约束构建

针对含磁流变阻尼的多自由度吸振系统，建立耦合非线性动力学方程：

Mx� + C x� + K T x = FMR x� , I + Fexc t
其中，M 为质量矩阵，C x� 为含 Hertz 碰撞模型的非线性阻尼矩阵，K(T)为温度依赖刚度矩

阵（基于 Bingham 流体本构关系），Fexc(t)为激励力，FMR为磁流变阻尼力（与速度x�、电流 I 相

关）。

将全局方程拆解为局部约束：① 转子截面动力学平衡（二阶常微分方程，ODE）；② 磁流变

阻尼力 - 速度关联（代数约束）；③ 刚度 - 温度动态关系（一阶 ODE），形成 PINN 可嵌入的

约束集。

2.1.2 分层损失函数设计

构建 “数据 - 物理 - 边界” 三层损失函数，平衡多源信息：

�� = �� + 1ℎ  + 2
其中：数据拟合损失 Ldata：最小化 PINN 预测位移x�与实验数据xexp的均方误差，确保模型贴

合实际；

物理约束损失 ℎ ：计算局部微分方程残差的 L2 范数，强制模型遵循物理规律；

边界损失 ：约束初始条件 � 0 = 0, �� 0 = 0 与固定端位移边界 �  = 0,  = 0 ，避

免 “物理不合理” 解。

采用梯度贡献度自适应权重调整1、2：若物理约束残差过大，自动增大1；若边界条件不满

足，提升2，确保训练收敛。

2.2 PINN-NSGA-III 多目标优化框架

2.2.1 优化目标与变量

以 “振动抑制率η（主系统振幅降低率）最大化、有效带宽∆f（吸振有效频率范围）最大化、

参数波动下性能衰减率δ（质量 / 刚度 ±10% 时性能变化）最小化” 为目标，优化变量为吸振

器质量 m（0.1~5 kg）、刚度 k（10³~10⁵ N/m）、磁流变阻尼器初始阻尼 c（1~100 N・s/m），优

化函数为：

�  = −,∆, .   ∈ ., , ∈ , ,  ∈ ,
2.2.2 动态精度优化策略

将 PINN 作为性能预测器替代传统有限元仿真，提出 “探索 - 利用” 分阶段优化：

1.探索阶段：采用低精度 PINN（3 层隐藏层，50 神经元 / 层）快速筛选参数空间，保留

50% 潜在最优解，降低计算成本；

x t , x� t C T = c0 1 −αT T − T0

：若物理约束

残差过大，自动增大

③ 自适应能力弱，被动吸振器参数固定，半主动控制（如 Skyhook 算法）依赖预设规则，无法

适配动态工况 [5]。

数据驱动模型（如 CNN、LSTM）虽能提升精度，但需万级以上标注数据，实验成本高昂（如

航空发动机振动实验单次超 10 万元）[6]。物理信息神经网络（PINN）通过将物理守恒定律嵌入

损失函数，实现 “物理先验 + 数据信息” 融合建模，在少数据、强约束问题中展现显著优势

[7]。目前，PINN 在振动控制中多聚焦单一环节（如响应预测），尚未形成 “建模 - 优化 - 控

制” 全流程方案 [8-9]。

本文提出基于 PINN 的动力吸振器一体化方案：① 构建多物理约束 PINN 模型，提升非线性

系统建模精度；② 融合 PINN 与 NSGA-III 实现高效多目标优化；③ 开发轻量化 PINN 与自适

应控制策略，满足实时控制需求。

2 核心方法

2.1 非线性吸振系统的 PINN 高精度建模

2.1.1 多物理约束构建

针对含磁流变阻尼的多自由度吸振系统，建立耦合非线性动力学方程：

Mx� + C x� + K T x = FMR x� , I + Fexc t
其中，M 为质量矩阵，C x� 为含 Hertz 碰撞模型的非线性阻尼矩阵，K(T)为温度依赖刚度矩

阵（基于 Bingham 流体本构关系），Fexc(t)为激励力，FMR为磁流变阻尼力（与速度x�、电流 I 相

关）。

将全局方程拆解为局部约束：① 转子截面动力学平衡（二阶常微分方程，ODE）；② 磁流变

阻尼力 - 速度关联（代数约束）；③ 刚度 - 温度动态关系（一阶 ODE），形成 PINN 可嵌入的

约束集。

2.1.2 分层损失函数设计

构建 “数据 - 物理 - 边界” 三层损失函数，平衡多源信息：

�� = �� + 1ℎ  + 2
其中：数据拟合损失 Ldata：最小化 PINN 预测位移x�与实验数据xexp的均方误差，确保模型贴

合实际；

物理约束损失 ℎ ：计算局部微分方程残差的 L2 范数，强制模型遵循物理规律；

边界损失 ：约束初始条件 � 0 = 0, �� 0 = 0 与固定端位移边界 �  = 0,  = 0 ，避

免 “物理不合理” 解。

采用梯度贡献度自适应权重调整1、2：若物理约束残差过大，自动增大1；若边界条件不满

足，提升2，确保训练收敛。

2.2 PINN-NSGA-III 多目标优化框架

2.2.1 优化目标与变量

以 “振动抑制率η（主系统振幅降低率）最大化、有效带宽∆f（吸振有效频率范围）最大化、

参数波动下性能衰减率δ（质量 / 刚度 ±10% 时性能变化）最小化” 为目标，优化变量为吸振

器质量 m（0.1~5 kg）、刚度 k（10³~10⁵ N/m）、磁流变阻尼器初始阻尼 c（1~100 N・s/m），优

化函数为：

�  = −,∆, .   ∈ ., , ∈ , ,  ∈ ,
2.2.2 动态精度优化策略

将 PINN 作为性能预测器替代传统有限元仿真，提出 “探索 - 利用” 分阶段优化：

1.探索阶段：采用低精度 PINN（3 层隐藏层，50 神经元 / 层）快速筛选参数空间，保留

50% 潜在最优解，降低计算成本；

x t , x� t C T = c0 1 −αT T − T0

；若边界条件不满足，提升

③ 自适应能力弱，被动吸振器参数固定，半主动控制（如 Skyhook 算法）依赖预设规则，无法

适配动态工况 [5]。

数据驱动模型（如 CNN、LSTM）虽能提升精度，但需万级以上标注数据，实验成本高昂（如

航空发动机振动实验单次超 10 万元）[6]。物理信息神经网络（PINN）通过将物理守恒定律嵌入

损失函数，实现 “物理先验 + 数据信息” 融合建模，在少数据、强约束问题中展现显著优势

[7]。目前，PINN 在振动控制中多聚焦单一环节（如响应预测），尚未形成 “建模 - 优化 - 控

制” 全流程方案 [8-9]。

本文提出基于 PINN 的动力吸振器一体化方案：① 构建多物理约束 PINN 模型，提升非线性

系统建模精度；② 融合 PINN 与 NSGA-III 实现高效多目标优化；③ 开发轻量化 PINN 与自适

应控制策略，满足实时控制需求。

2 核心方法

2.1 非线性吸振系统的 PINN 高精度建模

2.1.1 多物理约束构建

针对含磁流变阻尼的多自由度吸振系统，建立耦合非线性动力学方程：

Mx� + C x� + K T x = FMR x� , I + Fexc t
其中，M 为质量矩阵，C x� 为含 Hertz 碰撞模型的非线性阻尼矩阵，K(T)为温度依赖刚度矩

阵（基于 Bingham 流体本构关系），Fexc(t)为激励力，FMR为磁流变阻尼力（与速度x�、电流 I 相

关）。

将全局方程拆解为局部约束：① 转子截面动力学平衡（二阶常微分方程，ODE）；② 磁流变

阻尼力 - 速度关联（代数约束）；③ 刚度 - 温度动态关系（一阶 ODE），形成 PINN 可嵌入的

约束集。

2.1.2 分层损失函数设计

构建 “数据 - 物理 - 边界” 三层损失函数，平衡多源信息：

�� = �� + 1ℎ  + 2
其中：数据拟合损失 Ldata：最小化 PINN 预测位移x�与实验数据xexp的均方误差，确保模型贴

合实际；

物理约束损失 ℎ ：计算局部微分方程残差的 L2 范数，强制模型遵循物理规律；

边界损失 ：约束初始条件 � 0 = 0, �� 0 = 0 与固定端位移边界 �  = 0,  = 0 ，避

免 “物理不合理” 解。

采用梯度贡献度自适应权重调整1、2：若物理约束残差过大，自动增大1；若边界条件不满

足，提升2，确保训练收敛。

2.2 PINN-NSGA-III 多目标优化框架

2.2.1 优化目标与变量

以 “振动抑制率η（主系统振幅降低率）最大化、有效带宽∆f（吸振有效频率范围）最大化、

参数波动下性能衰减率δ（质量 / 刚度 ±10% 时性能变化）最小化” 为目标，优化变量为吸振

器质量 m（0.1~5 kg）、刚度 k（10³~10⁵ N/m）、磁流变阻尼器初始阻尼 c（1~100 N・s/m），优

化函数为：

�  = −,∆, .   ∈ ., , ∈ , ,  ∈ ,
2.2.2 动态精度优化策略

将 PINN 作为性能预测器替代传统有限元仿真，提出 “探索 - 利用” 分阶段优化：

1.探索阶段：采用低精度 PINN（3 层隐藏层，50 神经元 / 层）快速筛选参数空间，保留

50% 潜在最优解，降低计算成本；

x t , x� t C T = c0 1 −αT T − T0

，确

保训练收敛。

2.2 PINN-NSGA-III 多目标优化框架

2.2.1	优化目标与变量
以 “振动抑制率 η（主系统振幅降低率）最大化、有

效带宽 ∆f（吸振有效频率范围）最大化、参数波动下性能

衰减率δ（质量 / 刚度 ±10% 时性能变化）最小化” 为目标，

优化变量为吸振器质量m（0.1~5	kg）、刚度 k（10³~105	N/m）、

磁流变阻尼器初始阻尼 c（1~100 N·s/m），优化函数为：

min	J=−η,∆f,δ			s.t		m ∈ 0.1,5,k ∈ 103,105,c ∈ 1,100

2.2.2	动态精度优化策略
将 PINN 作为性能预测器替代传统有限元仿真，提出 

“探索 - 利用” 分阶段优化：

1. 探索阶段：采用低精度 PINN（3 层隐藏层，50 神经

元 / 层）快速筛选参数空间，保留 50% 潜在最优解，降低

计算成本；

2. 利用阶段：切换至高精度 PINN（5 层隐藏层，80 神

经元 / 层），对潜在解精细化评估，确保优化精度；

3. 置信度反馈机制：通过 PINN 预测方差量化置信度，

低置信度（方差 > 5%）样本补充 10% 实验数据修正，避免

预测偏差导致优化失效。

该框架将优化周期从传统方法的 7~10 天缩短至 1~2 

天，且 Pareto 最优解的全局覆盖率提升 28%。

2.3 轻量化 PINN 与自适应控制

2.3.1	PINN	轻量化实现
采用 “结构化剪枝 + 知识蒸馏” 融合方案，平衡精度

与实时性：

1. 结构化剪枝：通过 L1 正则化识别冗余神经元与网络

层，移除梯度贡献度 < 5% 的通道，参数减少 60%；

2. 知识蒸馏：以高精度 PINN 为 “教师模型”，训练

轻量化 “学生模型”（3 层隐藏层，40 神经元 / 层），通过

温度缩放（T=5）迁移预测知识，确保轻量化后模型精度损

失 ≤3%。

最终实现轻量化 PINN 单次预测耗时 ≤5	ms，满足实时

控制（周期 ≤10	ms）需求。

2.3.2	自适应控制策略
结合模型预测控制（MPC）设计闭环控制策略，流程

如下：

1. 状 态 感 知： 通 过	1	kHz	 加 速 度 传 感 器（PCB 

352C33，量程 ±50 g）与	0.1	μm	位移传感器（Keyence	

GT2-Pro）采集系统状态

③ 自适应能力弱，被动吸振器参数固定，半主动控制（如 Skyhook 算法）依赖预设规则，无法

适配动态工况 [5]。

数据驱动模型（如 CNN、LSTM）虽能提升精度，但需万级以上标注数据，实验成本高昂（如

航空发动机振动实验单次超 10 万元）[6]。物理信息神经网络（PINN）通过将物理守恒定律嵌入

损失函数，实现 “物理先验 + 数据信息” 融合建模，在少数据、强约束问题中展现显著优势

[7]。目前，PINN 在振动控制中多聚焦单一环节（如响应预测），尚未形成 “建模 - 优化 - 控

制” 全流程方案 [8-9]。

本文提出基于 PINN 的动力吸振器一体化方案：① 构建多物理约束 PINN 模型，提升非线性

系统建模精度；② 融合 PINN 与 NSGA-III 实现高效多目标优化；③ 开发轻量化 PINN 与自适

应控制策略，满足实时控制需求。

2 核心方法

2.1 非线性吸振系统的 PINN 高精度建模

2.1.1 多物理约束构建

针对含磁流变阻尼的多自由度吸振系统，建立耦合非线性动力学方程：

Mx� + C x� + K T x = FMR x� , I + Fexc t
其中，M 为质量矩阵，C x� 为含 Hertz 碰撞模型的非线性阻尼矩阵，K(T)为温度依赖刚度矩

阵（基于 Bingham 流体本构关系），Fexc(t)为激励力，FMR为磁流变阻尼力（与速度x�、电流 I 相

关）。

将全局方程拆解为局部约束：① 转子截面动力学平衡（二阶常微分方程，ODE）；② 磁流变

阻尼力 - 速度关联（代数约束）；③ 刚度 - 温度动态关系（一阶 ODE），形成 PINN 可嵌入的

约束集。

2.1.2 分层损失函数设计

构建 “数据 - 物理 - 边界” 三层损失函数，平衡多源信息：

�� = �� + 1ℎ  + 2
其中：数据拟合损失 Ldata：最小化 PINN 预测位移x�与实验数据xexp的均方误差，确保模型贴

合实际；

物理约束损失 ℎ ：计算局部微分方程残差的 L2 范数，强制模型遵循物理规律；

边界损失 ：约束初始条件 � 0 = 0, �� 0 = 0 与固定端位移边界 �  = 0,  = 0 ，避

免 “物理不合理” 解。

采用梯度贡献度自适应权重调整1、2：若物理约束残差过大，自动增大1；若边界条件不满

足，提升2，确保训练收敛。

2.2 PINN-NSGA-III 多目标优化框架

2.2.1 优化目标与变量

以 “振动抑制率η（主系统振幅降低率）最大化、有效带宽∆f（吸振有效频率范围）最大化、

参数波动下性能衰减率δ（质量 / 刚度 ±10% 时性能变化）最小化” 为目标，优化变量为吸振

器质量 m（0.1~5 kg）、刚度 k（10³~10⁵ N/m）、磁流变阻尼器初始阻尼 c（1~100 N・s/m），优

化函数为：

�  = −,∆, .   ∈ ., , ∈ , ,  ∈ ,
2.2.2 动态精度优化策略

将 PINN 作为性能预测器替代传统有限元仿真，提出 “探索 - 利用” 分阶段优化：

1.探索阶段：采用低精度 PINN（3 层隐藏层，50 神经元 / 层）快速筛选参数空间，保留

50% 潜在最优解，降低计算成本；

x t , x� t C T = c0 1 −αT T − T0；

2.响应预测：轻量化 PINN 预测未来	0.1	s	内振动响应，

识别激励频率变化趋势（如航空发动机转子转速波动）；

3.控制决策：MPC	以 “最小化未来振动振幅” 为目标，

在	0.05	s	控制时域内求解最优磁流变阻尼电流 I；

4. 温度补偿：引入温度 - 阻尼关联模型

③ 自适应能力弱，被动吸振器参数固定，半主动控制（如 Skyhook 算法）依赖预设规则，无法

适配动态工况 [5]。

数据驱动模型（如 CNN、LSTM）虽能提升精度，但需万级以上标注数据，实验成本高昂（如

航空发动机振动实验单次超 10 万元）[6]。物理信息神经网络（PINN）通过将物理守恒定律嵌入

损失函数，实现 “物理先验 + 数据信息” 融合建模，在少数据、强约束问题中展现显著优势

[7]。目前，PINN 在振动控制中多聚焦单一环节（如响应预测），尚未形成 “建模 - 优化 - 控

制” 全流程方案 [8-9]。

本文提出基于 PINN 的动力吸振器一体化方案：① 构建多物理约束 PINN 模型，提升非线性

系统建模精度；② 融合 PINN 与 NSGA-III 实现高效多目标优化；③ 开发轻量化 PINN 与自适

应控制策略，满足实时控制需求。

2 核心方法

2.1 非线性吸振系统的 PINN 高精度建模

2.1.1 多物理约束构建

针对含磁流变阻尼的多自由度吸振系统，建立耦合非线性动力学方程：

Mx� + C x� + K T x = FMR x� , I + Fexc t
其中，M 为质量矩阵，C x� 为含 Hertz 碰撞模型的非线性阻尼矩阵，K(T)为温度依赖刚度矩

阵（基于 Bingham 流体本构关系），Fexc(t)为激励力，FMR为磁流变阻尼力（与速度x�、电流 I 相

关）。

将全局方程拆解为局部约束：① 转子截面动力学平衡（二阶常微分方程，ODE）；② 磁流变

阻尼力 - 速度关联（代数约束）；③ 刚度 - 温度动态关系（一阶 ODE），形成 PINN 可嵌入的

约束集。

2.1.2 分层损失函数设计

构建 “数据 - 物理 - 边界” 三层损失函数，平衡多源信息：

�� = �� + 1ℎ  + 2
其中：数据拟合损失 Ldata：最小化 PINN 预测位移x�与实验数据xexp的均方误差，确保模型贴

合实际；

物理约束损失 ℎ ：计算局部微分方程残差的 L2 范数，强制模型遵循物理规律；

边界损失 ：约束初始条件 � 0 = 0, �� 0 = 0 与固定端位移边界 �  = 0,  = 0 ，避

免 “物理不合理” 解。

采用梯度贡献度自适应权重调整1、2：若物理约束残差过大，自动增大1；若边界条件不满

足，提升2，确保训练收敛。

2.2 PINN-NSGA-III 多目标优化框架

2.2.1 优化目标与变量

以 “振动抑制率η（主系统振幅降低率）最大化、有效带宽∆f（吸振有效频率范围）最大化、

参数波动下性能衰减率δ（质量 / 刚度 ±10% 时性能变化）最小化” 为目标，优化变量为吸振

器质量 m（0.1~5 kg）、刚度 k（10³~10⁵ N/m）、磁流变阻尼器初始阻尼 c（1~100 N・s/m），优

化函数为：

�  = −,∆, .   ∈ ., , ∈ , ,  ∈ ,
2.2.2 动态精度优化策略

将 PINN 作为性能预测器替代传统有限元仿真，提出 “探索 - 利用” 分阶段优化：

1.探索阶段：采用低精度 PINN（3 层隐藏层，50 神经元 / 层）快速筛选参数空间，保留

50% 潜在最优解，降低计算成本；

x t , x� t C T = c0 1 −αT T − T0，

③ 自适应能力弱，被动吸振器参数固定，半主动控制（如 Skyhook 算法）依赖预设规则，无法

适配动态工况 [5]。

数据驱动模型（如 CNN、LSTM）虽能提升精度，但需万级以上标注数据，实验成本高昂（如

航空发动机振动实验单次超 10 万元）[6]。物理信息神经网络（PINN）通过将物理守恒定律嵌入

损失函数，实现 “物理先验 + 数据信息” 融合建模，在少数据、强约束问题中展现显著优势

[7]。目前，PINN 在振动控制中多聚焦单一环节（如响应预测），尚未形成 “建模 - 优化 - 控

制” 全流程方案 [8-9]。

本文提出基于 PINN 的动力吸振器一体化方案：① 构建多物理约束 PINN 模型，提升非线性

系统建模精度；② 融合 PINN 与 NSGA-III 实现高效多目标优化；③ 开发轻量化 PINN 与自适

应控制策略，满足实时控制需求。

2 核心方法

2.1 非线性吸振系统的 PINN 高精度建模

2.1.1 多物理约束构建

针对含磁流变阻尼的多自由度吸振系统，建立耦合非线性动力学方程：

Mx� + C x� + K T x = FMR x� , I + Fexc t
其中，M 为质量矩阵，C x� 为含 Hertz 碰撞模型的非线性阻尼矩阵，K(T)为温度依赖刚度矩

阵（基于 Bingham 流体本构关系），Fexc(t)为激励力，FMR为磁流变阻尼力（与速度x�、电流 I 相

关）。

将全局方程拆解为局部约束：① 转子截面动力学平衡（二阶常微分方程，ODE）；② 磁流变

阻尼力 - 速度关联（代数约束）；③ 刚度 - 温度动态关系（一阶 ODE），形成 PINN 可嵌入的

约束集。

2.1.2 分层损失函数设计

构建 “数据 - 物理 - 边界” 三层损失函数，平衡多源信息：

�� = �� + 1ℎ  + 2
其中：数据拟合损失 Ldata：最小化 PINN 预测位移x�与实验数据xexp的均方误差，确保模型贴

合实际；

物理约束损失 ℎ ：计算局部微分方程残差的 L2 范数，强制模型遵循物理规律；

边界损失 ：约束初始条件 � 0 = 0, �� 0 = 0 与固定端位移边界 �  = 0,  = 0 ，避

免 “物理不合理” 解。

采用梯度贡献度自适应权重调整1、2：若物理约束残差过大，自动增大1；若边界条件不满

足，提升2，确保训练收敛。

2.2 PINN-NSGA-III 多目标优化框架

2.2.1 优化目标与变量

以 “振动抑制率η（主系统振幅降低率）最大化、有效带宽∆f（吸振有效频率范围）最大化、

参数波动下性能衰减率δ（质量 / 刚度 ±10% 时性能变化）最小化” 为目标，优化变量为吸振

器质量 m（0.1~5 kg）、刚度 k（10³~10⁵ N/m）、磁流变阻尼器初始阻尼 c（1~100 N・s/m），优

化函数为：

�  = −,∆, .   ∈ ., , ∈ , ,  ∈ ,
2.2.2 动态精度优化策略

将 PINN 作为性能预测器替代传统有限元仿真，提出 “探索 - 利用” 分阶段优化：

1.探索阶段：采用低精度 PINN（3 层隐藏层，50 神经元 / 层）快速筛选参数空间，保留

50% 潜在最优解，降低计算成本；

x t , x� t C T = c0 1 −αT T − T0 抵消高温（280℃）下阻尼性能衰减（衰减率 < 
15%）。

3 实验验证与结果分析

3.1 实验平台搭建
基于悬臂梁实验台验证（图 1）：主系统质量	4.5	kg，

固有频率	10~50	Hz；吸振器为磁流变半主动式，质量	0.5~2	

kg；数据采集频率	1	kHz，实验工况覆盖激励频率 10~30 
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Hz（模拟航空发动机转子与机床振动频段）、振幅	0.1~ 

10	mm。

图 1 悬臂梁吸振实验平台（1 - 悬臂梁；2 - 磁流变吸振器；

3 - 加速度传感器；4 - 位移传感器；5 - 激振器）

3.2 建模精度验证
对比 PINN 模型与传统线性模型、纯	LSTM	模型的预

测误差（表 1）。结果显示，PINN 在少数据（300 组样本）

下预测误差仅	4.8%，较线性模型（16.2%）与	LSTM（9.5%）

分别降低	69.1%	与	49.5%，验证了多物理约束对建模精度的

提升作用。

表 1 不同模型建模精度对比

模型类型
训练样

本量

预测误差

（%）

泛化误差（变频率工

况，%）

线性化模型 300 16.2 22.5

纯	LSTM	模型 300 9.5 15.8

本文 PINN 模型 300 4.8 7.2

3.3 优化与控制性能验证
优化后吸振器与传统	TMD	的性能对比（表 2）显示：

1. 振动抑制率从	32.1%	提升至	45.2%，增幅	40.8%，有

效降低主系统振动幅值；

2. 有效带宽从	12.5	Hz	扩展至	16.5	Hz，提升	32.1%，

适配宽频激励场景；

3. 参数波动下衰减率从	18.3%	降至	8.7%，鲁棒性显著

增强；

4. 控制响应时间 ≤8	ms，较传统	Skyhook	 算法（25 

ms）提升 68%，在变频率激励（10~30	Hz）下振动振幅标

准差降低 52%。

4 结论

本文提出基于 PINN 的动力吸振器 “建模 - 优化 - 控制” 

一体化方法，主要成果如下：

1. 构建的多物理约束 PINN 模型，在少数据（300 组样

本）下实现非线性吸振系统高精度建模，预测误差 ≤5%，

较传统模型精度提升显著；

2.PINN-NSGA-III	优化框架将优化周期缩短 70% 以上，

实现振动抑制率、带宽与鲁棒性的全局最优，Pareto 解覆盖

率提升 28%；

3. 轻量化 PINN 与自适应控制策略满足实时控制需

求（响应时间 ≤8	ms），优化后吸振器振动抑制率提升 

40.8%，有效带宽扩展	32.1%，鲁棒性显著增强。

4. 该方法为航空发动机转子、超精密机床等高端装备

的宽工况振动控制提供了新路径，未来可进一步探索 PINN 

在多自由度强非线性吸振系统中的应用。

表 2 吸振器性能对比结果

性能指标
传统	TMD	

吸振器

本文优化

吸振器

性能提升

率（%）

振动抑制率（%） 32.1 45.2 40.8

有效吸振带宽（Hz） 12.5 16.5 32.1

参数波动下性能衰减率（%） 18.3 8.7 52.5（降幅）

控制响应时间（ms） - 8 -
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