基于物理信息神经网络(PINN)动力吸振器性能优化与自适应控制研究
DOI: http://dx.doi.org/10.12349/foer.v2i5.7509
Article ID: 7509
摘要
关键词
全文:
PDF参考
Den Hartog J P. Mechanical Vibrations[M]. New York: McGraw-Hill, 1956.
王建军,李玩幽。旋转机械转子系统振动控制研究进展 [J]. 机械工程学报,2022, 58 (12): 1-20.
Li X, Zhang L, Wang Y. Multi-objective optimization of nonlinear energy sink based on BP neural network[J]. Mechanical Systems and Signal Processing, 2022, 167: 108586.
Raissi M, Perdikaris P, Karniadakis G E. Physics-informed neural networks for solving forward and inverse problems involving nonlinear PDEs[J]. Journal of Computational Physics, 2019, 378: 686-707.
Wang H, Chen Z, Liu G. Physics-informed neural networks for dynamic response prediction of rotor systems[J]. Aerospace Science and Technology, 2021, 118: 107089.
Kim S, Park J, Lee J. PINN-based vibration control of cantilever beams[J]. Smart Materials and Structures, 2023, 32(4): 045023.
清华大学智能装备团队。基于 PINN 的机床振动预测与控制[J]. 机械工程学报,2022, 58 (8): 35-43.
Chen C, Liu H, Zhang Y. Real-time vibration control of aerospace structures using lightweight PINN[J]. IEEE Transactions on Industrial Electronics, 2024, 71(3): 2890-2899.
Refbacks
- 当前没有refback。
版权所有(c)2025 宋 为平

此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。