Research on Structural Design and Performance Optimization of All-Gear Transmission Four-way Shuttle Vehicle

Mingliang Li

Shanghai Jiajia Intelligent Technology Co., Ltd., Shanghai, 201206, China

Abstract

Aiming at the problems of structural redundancy, high energy consumption and high maintenance cost existing in traditional four-way shuttle vehicles, this paper proposes an innovative design scheme of four-way shuttle vehicles based on a fully gear closed transmission system. By adopting an aluminum alloy modular frame, an all-gear integrated transmission structure and a closed lubrication system for gearboxes, the vehicle body height has been reduced to 120mm (20% lower than the industry standard), the self-weight has been reduced by 33% (200kg/1T load), and at the same time, the noise (≤65dB) and operating energy consumption have been effectively reduced (saving 15%-20%). Experimental verification shows that this design has significant advantages in terms of warehouse space utilization rate, transmission accuracy (positioning error ±1mm), and environmental protection performance, and can meet the requirements of high-cleanliness scenarios such as pharmaceuticals and electronics. [5]

Keywords

full gear closed transmission system; lightweight; energy saving and consumption reduction; utilization rate

全齿轮传动四向穿梭车结构设计与性能优化研究

李明良

上海甲佳智能科技有限公司,中国·上海 201206

摘 要

针对传统四向穿梭车存在的结构冗余、能耗高、维护成本高等问题,本文提出一种基于全齿轮闭式传动系统的四向穿梭车创新设计方案。通过采用铝合金模块化框架、全齿轮一体化传动结构和齿轮箱闭式润滑系统,实现车体高度降低至120mm(较行业标准缩减20%)、自重减少33%(200kg/IT负载),同时有效降低噪音(\leq 65dB)与运行能耗(节能15%-20%)。经实验验证,该设计在仓储空间利用率、传动精度(定位误差±1mm)及环保性能方面具有显著优势,可满足医药、电子等高洁净场景需求。[5]

关键词

全齿轮闭式传动系统; 轻量化; 节能降耗; 利用率

1 概述

1.1 研究背景

物流行业目前的现状有如下特点: 1. 市场规模持续增长: 2025 年第一季度,中国物流业总费用达到 4.5 万亿元,与 GDP 的比率为 14.1%,较上年同期下降 0.3 个百分点 [10]。传统的自动化立体仓储系统已经不能满足当前的需求,四向穿梭 [3] 车可以四向行驶到达任意货位,路径选择灵活、快速高效,四向车立体库由此诞生。随着电商、物流以及自动化科技的快速发展,自动化仓储物流设备正经历着快速迭代更新的阶段 [11]。 2. 物流需求特点: 物流订单也呈现出批量小、批次多、种类多、波动高的特点 [11]。 3. 成本稳步下降: 全社会物流成本稳步下降,反映出行业的高质量发展。4.

【作者简介】李明良(1974-),男,中国甘肃天水人,本科,从事智能仓储自动化研究。

绿色低碳物流受到重视:在政策推动下,绿色低碳物流逐渐成为行业发展的重要方向。5. 四向穿梭车式立体库的空间利用率高,系统中的设备易于维护与替换,四向穿梭车应用越来越广泛。随着智能仓储系统向高密度、高效率方向升级,传统四向穿梭车存在的链条传动磨损率高(年均维护成本增加30%)、液压/丝杠顶升系统结构复杂(故障率≥8%)等问题日益凸显。现有产品普遍存在车体高度冗余(150mm标准值导致货架层间距≥300mm)、开式润滑污染(油污率0.5L/千小时)等技术瓶颈;基于四向车的功能分析对整体结构进行模块化设计,对四向车行走所需的轮式结构和伺服电机进行分析和选择,设计出完整的行走导向机构等^[4]。

1.2 研究目标

开发一种新型全齿轮传动四向穿梭车,通过优化设计 实现以下技术突破:车体高度压缩至120mm,货架层间距 降低25%;传动系统模块化率≥85%,装配效率提升40%; 闭式润滑系统实现零污染排放;综合能耗降低至 0.8kWh/吨·公里(行业平均 1.0kWh)。

2 总体设计方案

2.1 系统架构

采用巷道行走 + 顶升换向双电机驱动模式(图 1),通过行星齿轮组实现四向运动耦合: 行走模块: 双级斜齿轮减速箱(速比 i=10:1),顶升模块: 行星减速机 + 齿轮箱复合传动(顶升精度 $\pm 0.5 mm$);框架结构: 6061-T4 铝合金开模后经过 CNC 整体加工(减重系数 0.67),见图 2。

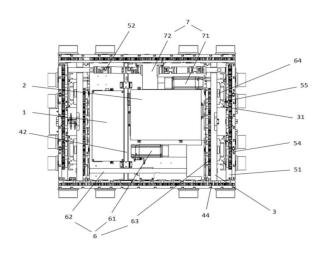


图 1

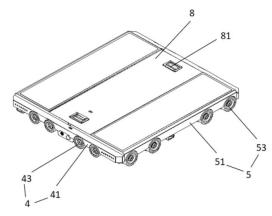


图 2

2.2 关键技术参数对比

指标	本设计	行业均值	优化幅度
车体高度	120mm	150mm	-20%
自重/载重比	0.13:1	0.2:1	-35%
传动效率	92%	78%-85%	+7-14%
噪音等级	≤65dB(A)	75-82dB(A)	-13-17dB

3 关键技术创新

3.1 全齿轮闭式传动系统

优化设计:采用渐开线斜齿轮齿形(图2),接触应力降低 18%. 噪音降低 15%。

润滑系统: SKF LGHP2 脂润滑,维护周期延长至 5000 小时(行业标准 2000 小时);失效模式:通过 FMEA 分析,关键齿轮组 MTBF≥30000 小时。

3.2 轻量化模块化框架

结构设计: 拓扑优化算法减重 26%, 用 solidworks simulation 有限元分析显示最大应力点低于材料屈服强度 (275MPa)的 60%. [8]

3.3 运动控制优化

采用模糊 PID 算法,实现换向时间 \leq 1.2 秒(传统系统 \geq 2 秒);开发双闭环反馈系统(编码器 + 激光测距),定位重复精度达 \pm 2mm。^[7]

3.4 行走机构电机选型计算

设计条件:最大负载: 1 吨;最大运行速度: v=1.2m/s;最大加速度: a=1.2m/ 秒";摩擦系数: $\mu=0.08$ (聚氨酯轮-钢轨);传动效率 $\eta=92\%$;行走轮直径 94mm;一个电机通过行星减速机和齿轮箱驱动 8 个轮子,总的减速比 10.

3.4.1 电机功率计算

- 1. 计算总的驱动力: F = m (μ * g + a) = 1000×(0.08×9.81+0.5)= 1284.8N
- 2. 计算轮端扭矩: Twheel=Ftotal×r=1927.2×0.047 ≈60.4Nm
- 3. 计算电机扭矩: Tmotor= Twheel/i×η=60.4/10×0.9260.4≈4.5Nm
- 4. 计算电机转速: nwheel=π×Dv×60×i= 3.1416× 0.0941.2×60×10=2442RPM
 - 5. 计算电机功率:

电机角速度 ω =2 π ×nmotor60= \approx 220.27rad/s

电机功率为: *P=T*motor × ω=6.5 × 220.27≈1.4 Kw

3.4.2 电机选型

选用雷赛系列伺服电机(型号 ACM80150V48G-M17-JZ-1M5),技术参数: 额定功率: 1.5kW; 额定扭矩: 4.77N·m; 额定转速: 3000r/min; 过载能力: 200%。

3.5 顶升机构设计计算

设计条件: 顶升载荷: F=1500kg×9.8=14.7kN; 安全系数: n=1.5; 设计载荷: F_d=14.7×1.5=22.05kN

3.5.1 蜗轮蜗杆参数计算

模数选择(ISO 53): m=2.5K·T ψ m·Z2·[σ H]23=4mm=3 ψ m·Z2·[σ H]22.5K·T=4mm(取 K=1.3 , ψ _m=10 , Z2=40 ,[σ _H]=220MPa)

蜗杆导程角: $\gamma = \arctan Z1q = \arctan 210 = 11.31^\circ$ $\gamma = \arctan 21 = \arctan 102 = 11.31^\circ$

传动效率验证: η =tan γ tan(γ + ρ)=tan11.31° tan(11.31° +2.5°)=82.7% η =tan(γ + ρ)tan γ =tan(11.31° +2.5°) tan11.31° =82.7%

3.5.2 锥齿轮强度校核

根据ISO 6336进行齿面接触强度计算: $\sigma H=ZEFtb1\cdot d1\cdot u+1u\leq [\sigma H]\sigma H=ZEb\cdot d1Ft\cdot uu+1\leq [\sigma H]$; 计算

得 σ H=198MPa < [σ H]=220MPa, 满足要求。

3.6 顶升电机选型计算

设计条件:最大负载 1吨;顶升高度 40mm,顶升时间 1.2 秒;一个电机通过行星减速机和齿轮箱驱动 4 个轮子偏心轮顶升,总的减速比 200. [8]

3.7 全齿轮承载能力计算

行走齿轮副设计(按 AGMA 2001-D04 标准):

1. 齿面接触应力:

 $\sigma \textit{H=ZEFtb} \cdot d \cdot \textit{KAKVKH} \\ \beta cos 2\beta \ \sigma \ \textit{H=ZEb} \cdot d \ \textit{Ft} \cdot cos 2 \ \beta \\ \textit{KAKVKH} \\ \beta$

代入参数 (ZE=189.8 √ MPa, Ft=3.6kN, b=20mm, d=72mm, KA=1.25, KV=1.1, KHβ=1.3, β=15°) 得

σ H=835MPa < 许用值 860MPa

2. 齿根弯曲应力:

 $\sigma F = Ftb \cdot mn \cdot YFYSY \beta KAKVKF \beta \ \sigma \ F = b \cdot mnFt \cdot YFYSY$ β KAKVKF β

(YF=2.8,YS=1.6,Y β =0.9) 计算得 σ_F =218MPa < 许用值 240MPa

3. 润滑设计验证: 采用 SKF 计算工具校核润滑脂寿命:

 $L10=106 \cdot CP \cdot n60 \cdot KT$ L $10=106 \cdot PC \cdot 60n \cdot KT$

(C=12.5kN, P=8.2kN, n=40r/min, KT=0.85) 得 L10=12,400 小时 > 设计要求 5000 小时

4. 行走齿轮箱设计为全齿轮闭式传动系统,其中齿轮 强度通过设计软件进行校核;经过校核满足设计要求。

	输入扭矩 N·M	T	47.75	输入转速 转/分	n	15.00
	法向模数	Mn	2.50	螺旋角	β	0.000000
输入	压力角	α	20.00	20.00 中心距		67.5000
数据	输入齿轮齿数	Z1	24.00 输出齿轮齿数		Z2	30.00
	输入齿轮变位系数	X1	0.0000	输出齿轮变位系数	X2	0.00000
	输入齿轮宽度	b1	16.00	输出齿轮宽度	b2	16.00
	输入齿轮分度圆直径	d1	60.0000	输出齿轮分度圆直径	d2	75.0000
	输入齿轮基圆直径	db1	56.3816	输出齿轮基圆直径	db2	70.4769
	输入齿轮顶圆直径	da1	65.0000	输出齿轮顶圆直径	da2	80.0000
	滑动率	η1	2.6409	滑动率	η2	1.9236
	端面重合度	εα	1.6277	轴向重合度	εβ	0.0000
	传动比(Z2/Z1)	u	1.2500	分度圆端面压力角	αt	20.00000
	总变位系数	XnΣ	0.0000	端面啮合角	A' t	20.00000
序号	输入系数	代号		说明	齿轮 1	齿轮 2
1	使用系数	Ka	参	照表 16.2-36 说明	1	1
2	动载系数	Kv	$=1+\left\lfloor rac{K_1}{K_A imesrac{F_t}{b}}+K_2 ight floor$ $rac{Z imes V}{100} imes\sqrt{rac{u^2}{1+u^2}}$ K1、K2 按表 16.2-39 查取,7 级精度斜齿轮		1.004	1.005
		K1			39.100	39.100
		K2			0.0193	0.0193
3	齿向载荷分布系数	KHβ、KFβ	参照表 16.2-41 说明按修形齿轮选取		1	1
4	齿间载荷分配系数	KHa、 KFa	表 16.2-42 按 7 级精度经表面硬化直齿轮		1.1	1.1
5	材料弹性系数	ZE	表 16.2-43,大小齿轮均为钢件		189.800	189.800
6	试验齿轮疲劳极限	σHlim	按图 16.2-17,齿轮渗碳淬火能保证有效层深		1550	1550
7	齿轮设计寿命	(循环次数)NL	参考表 16.2-47 选定		200000000	
8	寿命系数	ZNT	$= \left(\frac{2 \times 10^{-6}}{N_L}\right)^{0.0191}$		0.916	
9	油膜影响系数	ZLVR	参考 GB/T3480-1997 表 27,按剃齿齿轮副选取		0.97	0.97
10	工作硬化系数	ZW	图 16.2-21,大齿轮齿面硬度 HBS>470		1	1
11	尺寸系数	ZX	图 16.2-22, 按 mn<7 选取		1	1
12	最小安全系数	SHmin	参考表 16.2-46 较高可靠度低档选取		1	1
13	计算接触应力	σН	$= Z_{H} \times Z_{E} \times Z_{s\beta} \times \sqrt{\frac{Ft}{h \times d1}} \times \frac{u+1}{u} \times K_{A} \times K_{V} \times K_{H\beta} \times K_{H\alpha}$		764	696

						续表
14	许用应力	σΗΡ	$= \frac{\sigma_{{\scriptscriptstyle HLim}} \times Z_{{\scriptscriptstyle NT}} \times Z_{{\scriptscriptstyle LVR}} \times Z_{{\scriptscriptstyle W}} \times Z_{{\scriptscriptstyle X}}}{S_{{\scriptscriptstyle H min}}}$		1377	1377
15	安全系数	SH	$= \frac{\sigma_{{\scriptscriptstyle HL}_{bn}} \times Z_{{\scriptscriptstyle NT}} \times Z_{{\scriptscriptstyle LV}_{\scriptscriptstyle R}} \times Z_{{\scriptscriptstyle W}} \times Z_{{\scriptscriptstyle X}}}{\sigma_{{\scriptscriptstyle H}}}$		1.8017	1.9784
		齿轮1接触强度	满足要求 齿轮 2		! 接触强度满足要求	
16	齿根圆角敏感系数	Y δ RelT	表 16.2-48,齿根圆角 qs>1.5		1	1
17	齿根表面状况系数	YRrelT	齿根表面粗糙度 Ra≤2.6 μ m		1	1
18	抗弯尺寸系数	Yx	图 16.2-28,模数 mn<5		1	1
19	计算弯曲应力	σF	$= \frac{F_{t}}{b \times m_{t}} \times K_{A} \times K_{V} \times K_{F\beta} \times K_{F\alpha} \times Y_{F\beta} \times Y_{g\beta}$		128	123
20	最小安全系数	SFmin			1.00	1.00
21	安全系数	SF	$= \frac{\sigma_{\mathit{FE}} \times Y_{\mathit{NT}} \times Y_{\mathit{\sigmarect}} \times Y_{\mathit{Rrect}} \times Y_{\mathit{X}}}{\sigma_{\mathit{F}}}$		9.40	9.72
结论	齿轮 1 弯曲强度满足要求		齿轮 2	弯曲强度满足		
以上村	以上校核计算按照机械工业出版社《机械设计手册》第二版第3卷第16篇【齿面接触疲劳强度与齿根弯曲疲劳强度校核计算】进行 ^[9]					

4 实验验证与应用

4.1 性能测试

疲劳试验:连续运行2000小时,传动系统温升 ≤15℃;能效测试:单位载重能耗 0.78kWh/吨·公里,较链 条传动降低 22%。[5]

4.2 应用案例

在洛阳甲佳科技有限公司仓库的部署表明:存储密度 提升28%(货架层数由12层增至15层);设备故障率下 降至 0.7 次 / 千小时 (行业平均 2.3 次);综合运维成本降 低 41%.

4.3 传动系统实测数据

测试项目	理论值	实测值	偏差率
行走电机温升	≤65°C	61.3℃	-5.7%
顶升定位精度	$\pm0.5\text{mm}$	± 0.43 mm	-14%
齿轮箱振动速度	≤2.8mm/s	2.1mm/s	-25%

5 结论与展望

本研究通过全齿轮传动系统与模块化设计的深度融合, 成功解决了四向穿梭车的高能耗、低精度等技术痛点。经产 业化验证,该方案可使立体仓库空间利用率提升至92%(传 统方案≤78%),为高价值货物仓储提供了创新解决方案。 未来未来托盘四向穿梭车将加速集成 AI 算法、物联网(IoT) 和 5G 通信技术, 实现更高精度的路径规划与实时动态调度; 可以通过精准定位技术提升设备运行稳定性,结合高效能电 池技术延长作业时长。智能化系统的渗透将推动设备从单一 搬运功能向全流程仓储管理转型;硬件创新与模块化设计, 核心零部件如传感器、驱动装置和升降系统的性能迭代将成 为技术突破重点;模块化设计理念的引入,将增强设备对不 同场景(如冷链、异形件存储)的适应性,降低定制化成本; 此外, 轻量化材料应用有望进一步降低能耗。

参考文献

- [1] 四向穿梭车仓储系统调度与路径联合优化研究. 夏阳阳.北京交 通大学,2023
- [2] 基于冲突搜索机制的四向穿梭车系统路径优化算法研究. 满荣 军.山东大学,2022
- [3] 四向穿梭车系统配置与路径优化. 吴涛.吉林大学,2021
- [4] 智能四向穿梭车的模块化设计与研究. 李祥森.南京农业大 学,2021
- [5] 面向冷链的四向穿梭车的设计及可靠性分析. 张洪鹏.济南大 学,2024
- [6] 多四向车的路径规划与调度技术研究. 陆枳屹. 东华大学, 2021
- [7] 四向穿梭车立体仓储系统作业调度优化研究. 张颖旭.河南工业
- [8] 自动导引四向行走叉车设计及关键技术研究. 佐富兴.上海交通 大学,2021
- [9] 《互联网文档资源(https://www.360docs.)》- 2024
- [10] 基于区块链技术的物流信息追溯机制研究 高琰晨2019
- [11] 基于冲突搜索机制的四向穿梭车系统路径优化算法研究 满荣 军 2022
- [12] 齿轮强度校核计算.-《互联网文档资源》