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Abstract
[Objective] This study utilizes the Google Earth Engine (GEE) platform to analyze Sentinel-1 and Sentinel-2 satellite imagery data, 
evaluating the effectiveness of different satellite features in land cover classification tasks. The research aims to establish an efficient 
automated feature optimization framework on GEE to obtain more representative feature sets. [Methods] Taking the area near Lake 
Trasimeno in Umbria, Italy as a case study, we employed Jeffries-Matusita (JM) distance to assess feature discriminative power and 
combined it with correlation analysis for feature selection. [Results] The study found that the average JM value showed a significant 
positive correlation with the Kappa coefficient of classification accuracy (correlation coefficient = 0.53). [Conclusion] This research 
demonstrates the effectiveness of building an automated feature selection framework on GEE, which can enhance the performance of 
land cover classification tasks. The findings provide effective methodological support for remote sensing data feature selection and 
classification accuracy improvement.
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基于 GEE 的土地利用分类特征优选研究
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摘　要

【目的】本研究基于 Google Earth Engine（GEE）平台，分析Sentinel-1 和 Sentinel-2 卫星影像数据，并评估不同卫星特征在
土地覆盖分类任务中的有效性。研究旨在 GEE 平台上搭建一个高效的自动化特征优化框架，以获取更具代表性的特征集。
【方法】以意大利翁布里亚地区特拉西梅诺湖附近地区为例，运用杰弗里斯-默特尔斯（Jeffries-Matusita, JM）距离评估特
征间的区分能力，并结合相关性分析进行了特征优选。【结果】研究发现，所选区域的 JM 平均值与分类精度 Kappa 系数
呈现出显著的正相关关系（相关系数为0.53）。【结论】此研究证明了在 GEE 平台上构建自动化特征优选框架的有效性，
特征优选可提高土地覆盖分类任务的性能。本研究的发现为遥感数据的特征选择和分类精度提升提供了有效的方法支持。 
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1 引言

【研究意义】在遥感识别土地利用类型 Geographic 

Information System（GIS）领域 [1]，特征选择和优化对于提

高土地利用分类精度和处理效率具有重要意义 [2,3]。随着遥

感技术的飞速发展，尤其是 Google Earth Engine（GEE）平

台的兴起 [4]，为研究人员提供了前所未有的大量地理空间数

据。这些数据不仅覆盖广泛的区域，同时包含了丰富的地理

和环境信息。然而，如何有效地处理和分析这些庞大的数据

集以提取有价值的信息，成为目前面临的挑战。在众多分析

技术中，特征选择和优化在提高分类任务的性能方面起着

至关重要的作用。因此，从更宏观的视角来看，遥感技术

在土地利用方面本身具有不可替代的核心意义：它突破了

传统土地调查依赖人工实地勘测的局限，能够快速、动态

地监测大范围土地利用现状及变化趋势，为国土空间规划、

生态环境保护、农业资源管理、城市扩张监测等关键领域提

供及时、准确的基础数据支撑，是实现土地资源精细化管

理、可持续利用以及应对气候变化等全球性议题的重要技术
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手段。【前人研究进展】在地表覆盖和土地利用分类的遥

感分析中，利用机器学习方法时，选取合适的特征集是关

键 [5]。有效的特征选择不仅可以提高分类的准确性，还可以

显著降低计算复杂性，提升分析的效率 [6]。此外，通过减少

不必要的特征数量，模型的解释性和透明度也可得到提高。

确定不同类别之间的可分离性常用方法有 3 种：可分离性指

数（SI）[7,8]、变换散度（TD）[9]such as Moderate Resolution 

Imaging Spectroradiometer (MODIS 和杰弗里斯 - 默特尔斯

（Jeffries-Matusita） 距 离 [10]。 与 SI 和 TD 相 比，JM 距 离

可以定量评估不同类别之间的可分离性 [11]。【本研究切入

点】基于 GEE 平台利用 JM 距离寻找最优特征是可行的
[12,13]5.04%,4.48%;(2。而结合 JM 距离与相关系数构建了特征

选择算法，不仅可以有效降低参与分类的特征数量 , 还能提

高分类模型的运行效率和精度 [14]。【拟解决的关键问题】

基于以上，本研究旨在基于 GEE 平台构建一个自动化的特

征优选框架。该框架采用 JM 距离来评估特征在分类任务中

的有效性，同时，结合相关性分析自动优化特征选择。通过

分析 Sentinel-1 和 Sentinel-2 卫星数据，探索特征选择对分

类准确性的影响，以及不同特征组合如何影响最终的分类结

果。以提高 GEE 平台土地覆盖分类任务的自动化与高效化。

2 材料与方法

2.1 实验数据
研究区位于意大利翁布里亚地区特拉西梅诺湖周围，

北纬 43° 06′、东经 12° 07′，该地区涵盖了多种土地

利用类型，生态环境多样。研究区域内包含多种图斑类型，

涵盖各类农用地（如耕地、草地、园地）、林地、人造地

表，以及若干小型人造湖泊。本次实验使用的样点数据源自 

Tassi[15] 的公开数据集（表 1），研究时间也与 Tassi[15] 相同

为 2017 年 1 月 1 日至 2019 年 12 月 31 日，筛选出云量低于

10% 的卫星影像，以减少云层干扰。

实验区域的土地利用类型划分为六类：(0) 建成区，包

括住宅区与其他人造表面；(1) 一年生作物区，涵盖多种作

物如谷物、豆类和园艺作物；(2) 多年生作物区，主要由葡

萄园和橄榄林构成；(3) 草地；(4) 林地；(5) 灌木区，包括

湖滨和河岸带植被以及其他稀疏的灌木覆盖区；(6) 水体，

囊括特拉西梅诺湖及其他小型私人湖泊。

表 1 各用地类型样点数量

类型 标签 数量

建成区 1 35

一年生作物区 2 154

多年生作物区 3 40

草地 4 59

林地 5 65

灌木 6 17

水体 0 80

总计 450

在本研究中，综合参考了 David 总结的 232 个遥感指

数。鉴于数据特性，最终选取了 Sentinel-2 卫星能够计算的

所有指数共 192 个（详见附表 1）。除外，本研究还纳入了 

Sentinel-1 卫星的升轨（ascending）和降轨（descending）轨

道上的 VV 和 VH 波段（分别标记为 VVA、VVD、VHA、

VHD），以及 Sentinel-2 的 B1 至 B12 波段。因此，本研究共

涵盖了 208 个特征指数（见表 2），为进行深入的遥感分析

提供了丰富而全面的数据资源。除 Sentinel-1、Sentinel-2 基础

波段之外的其他衍生指数的详细信息（包括指数类型、文献

来源、计算方法等），均来源于 David 构建的 Streamlit 平台

（Streamlit (davemlz-espectro-espectro-91350i.streamlit.app)）。

2.2 研究方法
本研究采用了杰弗里斯 - 默特尔斯（Jeffries-Matusita,	

JM）距离和相关系数这两种统计方法进行特征优选实验。

同时，通过随机森林算法进行像素级分类，并采用 Kappa 

系数来进行精度分析。实验的具体流程如下：

特征提取：遥感影像中提取特征，构成分类的原始特

征集。

特征评估：在构建的特征集基础上，分别计算每个特

征的 JM 距离平均值和相关系数，以及其在分类任务中的精

度。通过这些计算，研究分类精度与 JM 距离平均值及相关

系数绝对值之间的关系。

特征数量分析：基于构建的特征集，逐步增加特征数量，

并计算在这种特征排列下不同特征数量的分类精度，从而探

索研究区分类精度与特征数量之间的关联性。

分类实验与验证：基于经过优选的特征集，结合随机

森林算法进行基于像素的分类实验，并与前期研究结果进行

对比，以验证本研究构建的框架的有效性。

2.2.1 概率距离——JM 距离
“ 杰 弗 里 斯 - 默 特 尔 斯 距 离”（Jeffries-Matusita	

Distance），简称 JM 距离，是一个精细的统计度量，专门

用于量化两个概率分布之间的相似性或差异性 [16]。在遥感、

图像处理以及模式识别的领域，JM 距离被广泛应用于评估

不同特征在区分各类别中的效能。它的取值范围介于 0 到 2 

之间，其中 0 表示两个分布完全相同，而 2 表示两者完全

不同。

JM 距离的核心是基于 Bhattacharyya 系数的改进。这种

改进为比较两个统计样本或概率分布间的差异提供了方法，

具体是通过计算两个概率密度函数的重叠区域来实现的。

在复杂的监督分类任务中，特别是在区分多样化的地表类型

时，JM 距离的应用至关重要。它通过量化不同类别之间的

可区分性，为精确的特征选择提供了科学依据。理想情况下，

最有效的特征集应该是能够最大化类别 JM 距离的集合，进

而提升分类算法的总体精度。因此，JM 距离不仅是一个度

量标准，更是特征选择和模型优化过程中的关键因素，在增

强分类效果和深入理解数据结构方面发挥着显著作用。

JM 距离的计算公式如下：
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其中，B2是 Bhattacharyya 距离,于两个概率分布 P 和 Q 以及其均值 μP、μQ 和协方差矩阵ΣP、
ΣQ，Σ 是 ΣP 和 ΣQ 的平均值。

2.2.2 相关系数计算
相关系数的计算通常采用皮尔逊相关系数[17]（Pearson correlation coefficient）。该系数的值介

于 -1 和 1 之间，其中，1 表示完全正相关，-1 表示完全负相关，0 表示无相关性。公式如下：
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其中，Xi 和 Yi分别是两个变量的观测值， X 和 Y 是它们的平均值。

2.2.3 优选方法
制定如下特征优化框架，旨在优化分类性能并提高解释性。

1.选取 JM平均值大于 0.8的特征[18]。

其中，
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在分类任务中的精度。通过这些计算，研究分类精度与 JM 距离平均值及相关系数绝对值之间的关

系。

特征数量分析：基于构建的特征集，逐步增加特征数量，并计算在这种特征排列下不同特征数

量的分类精度，从而探索研究区分类精度与特征数量之间的关联性。

分类实验与验证：基于经过优选的特征集，结合随机森林算法进行基于像素的分类实验，并与

前期研究结果进行对比，以验证本研究构建的框架的有效性。

2.2.1 概率距离——JM距离
“杰弗里斯-默特尔斯距离”（Jeffries-Matusita Distance），简称 JM 距离，是一个精细的统计度

量，专门用于量化两个概率分布之间的相似性或差异性[16]。在遥感、图像处理以及模式识别的领域，

JM 距离被广泛应用于评估不同特征在区分各类别中的效能。它的取值范围介于 0 到 2 之间，其

中 0 表示两个分布完全相同，而 2 表示两者完全不同。

JM 距离的核心是基于 Bhattacharyya 系数的改进。这种改进为比较两个统计样本或概率分布间

的差异提供了方法，具体是通过计算两个概率密度函数的重叠区域来实现的。在复杂的监督分类任

务中，特别是在区分多样化的地表类型时，JM 距离的应用至关重要。它通过量化不同类别之间的

可区分性，为精确的特征选择提供了科学依据。理想情况下，最有效的特征集应该是能够最大化类

别 JM距离的集合，进而提升分类算法的总体精度。因此，JM 距离不仅是一个度量标准，更是特征

选择和模型优化过程中的关键因素，在增强分类效果和深入理解数据结构方面发挥着显著作用。
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其中，Xi 和 Yi分别是两个变量的观测值， X 和 Y 是它们的平均值。

2.2.3 优选方法
制定如下特征优化框架，旨在优化分类性能并提高解释性。

1.选取 JM平均值大于 0.8的特征[18]。
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可区分性，为精确的特征选择提供了科学依据。理想情况下，最有效的特征集应该是能够最大化类

别 JM距离的集合，进而提升分类算法的总体精度。因此，JM 距离不仅是一个度量标准，更是特征
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的平均值。

表 2 特征名称表

指数名称 指数名称 指数名称 指数名称 指数名称 指数名称 指数名称 指数名称

B1 BITM FCVI MCARI705 NDBI NIRvH2 S2REP TriVI

B2 BIXS GARI MCARIOSAVI NDCI NLI S2WI UI

B3 BLFEI GBNDVI MCARIOSAVI705 NDDI NMDI S3 VARI

B4 BNDVI GCC MGRVI NDGI NRFIg SARVI VARI700

B5 BRBA GDVI MIRBI NDGlaI NRFIr SAVI VI700

B6 BWDRVI GEMI MLSWI26 NDII NSDS SAVI2 VIBI

B7 BaI GLI MLSWI27 NDMI NSDSI1 SEVI VIG

B8 CIG GM1 MNDVI NDPI NSDSI2 SIPI VgNIRBI

B8A CIRE GM2 MNDWI NDPonI NSDSI3 SR VrNIRBI

B9 CSI GNDVI MNLI NDREI NWI SR2 WDRVI

B11 CVI GOSAVI MRBVI NDSI NormG SR3 WDVI

B12 DBSI GRNDVI MSAVI NDSII NormNIR SR555 WI1

AFRI1600 DSI GRVI MSI NDSInw NormR SR705 WI2

AFRI2100 DSWI1 GSAVI MSR NDSWIR OCVI SWI WI2015

ANDWI DSWI2 GVMI MSR705 NDSaII OSAVI SWM WRI

ARI DSWI3 IAVI MTCI NDSoI PISI SeLI kEVI

ARI2 DSWI4 IBI MTVI1 NDTI PSRI TCARI kIPVI

ARVI DSWI5 IKAW MTVI2 NDVI RCC TCARIOSAVI kNDVI

ATSAVI DVI IPVI MuWIR NDVI705 RDVI TCARIOSAVI705 kRVI

AWEInsh DVIplus IRECI NBAI NDVIMNDWI REDSI TCI kVARI

AWEIsh EMBI LSWI NBR NDWI RENDVI TDVI mND705

BAI EVI MBI NBR2 NDWIns RGBVI TGI mSR705

BAIM EVI2 MBWI NBRSWIR NDYI RGRI TRRVI VVA

BAIS2 ExG MCARI NBRplus NGRDI RI TSAVI VVD

BCC ExGR MCARI1 NBSIMS NHFD RI4XS TTVI VHA

BI ExR MCARI2 ND705 NIRv RVI TVI VHD

2.2.2 相关系数计算

相关系数的计算通常采用皮尔逊相关系数 [17]（Pearson 

correlation	coefficient）。该系数的值介于 -1 和 1 之间，其中，

1 表示完全正相关，-1 表示完全负相关，0 表示无相关性。

公式如下：

1

2 2
1 1

( )( )

( ) ( )

n
i ii

n n
i ii i

X X Y Y
r

X X Y Y
=

= =

− −
=

− −

∑
∑ ∑

其中，

1

BI ExR
MCARI
2

ND705 NIRv RVI TVI VHD

2.2 研究方法
本研究采用了杰弗里斯-默特尔斯（Jeffries-Matusita, JM）距离和相关系数这两种统计方法进行

特征优选实验。同时，通过随机森林算法进行像素级分类，并采用 Kappa 系数来进行精度分析。实

验的具体流程如下：

特征提取：遥感影像中提取特征，构成分类的原始特征集。

特征评估：在构建的特征集基础上，分别计算每个特征的 JM 距离平均值和相关系数，以及其

在分类任务中的精度。通过这些计算，研究分类精度与 JM 距离平均值及相关系数绝对值之间的关

系。

特征数量分析：基于构建的特征集，逐步增加特征数量，并计算在这种特征排列下不同特征数

量的分类精度，从而探索研究区分类精度与特征数量之间的关联性。

分类实验与验证：基于经过优选的特征集，结合随机森林算法进行基于像素的分类实验，并与

前期研究结果进行对比，以验证本研究构建的框架的有效性。

2.2.1 概率距离——JM距离
“杰弗里斯-默特尔斯距离”（Jeffries-Matusita Distance），简称 JM 距离，是一个精细的统计度

量，专门用于量化两个概率分布之间的相似性或差异性[16]。在遥感、图像处理以及模式识别的领域，

JM 距离被广泛应用于评估不同特征在区分各类别中的效能。它的取值范围介于 0 到 2 之间，其

中 0 表示两个分布完全相同，而 2 表示两者完全不同。

JM 距离的核心是基于 Bhattacharyya 系数的改进。这种改进为比较两个统计样本或概率分布间

的差异提供了方法，具体是通过计算两个概率密度函数的重叠区域来实现的。在复杂的监督分类任

务中，特别是在区分多样化的地表类型时，JM 距离的应用至关重要。它通过量化不同类别之间的

可区分性，为精确的特征选择提供了科学依据。理想情况下，最有效的特征集应该是能够最大化类

别 JM距离的集合，进而提升分类算法的总体精度。因此，JM 距离不仅是一个度量标准，更是特征

选择和模型优化过程中的关键因素，在增强分类效果和深入理解数据结构方面发挥着显著作用。

JM距离的计算公式如下：

JM=2∗ (1−e−B2)

B2=
1
8
(μP−μQ)TΣ−1(μP−μQ)+

1
2
ln

|Σ|
|ΣP||ΣQ|

其中，B2是 Bhattacharyya 距离,于两个概率分布 P 和 Q 以及其均值 μP、μQ 和协方差矩阵ΣP、
ΣQ，Σ 是 ΣP 和 ΣQ 的平均值。

2.2.2 相关系数计算
相关系数的计算通常采用皮尔逊相关系数[17]（Pearson correlation coefficient）。该系数的值介

于 -1 和 1 之间，其中，1 表示完全正相关，-1 表示完全负相关，0 表示无相关性。公式如下：

1

2 2
1 1
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n
i ii
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i ii i

X X Y Y
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X X Y Y


 

 

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其中，Xi 和 Yi分别是两个变量的观测值， X 和 Y 是它们的平均值。

2.2.3 优选方法
制定如下特征优化框架，旨在优化分类性能并提高解释性。

1.选取 JM平均值大于 0.8的特征[18]。

分别是两个变量的观测值，  和  是它

们的平均值。

2.2.3 优选方法

制定如下特征优化框架，旨在优化分类性能并提高解

释性。

1. 选取 JM 平均值大于 0.8 的特征 [18]。

2. 剔除高度相关的特征：在所选的特征集中，如特征

之间相关性系数大于 0.95。仅保留了与目标相关系数最高的

一个特征，以降低多重共线性的风险。有助于提高模型的稳

定性和解释性。

2.3 随机森林
随机森林 [19] 是一种集成学习方法，它通过构建并整合

多个决策树来执行分类或回归任务 [20]。在本研究中，采用

随机森林算法进行土地利用类型的像素级分类，其中决策树

的数量设定为 100。为有效实现这一分类框架，研究所用的

数据集被分成两个部分：80% 的数据随机选取作为训练集，

用于构建随机森林模型；剩余的 20% 则作为测试集，用于

评估模型的性能。

2.4 精度分析
Kappa 系数是评估分类精度的一个重要指标，用于衡

量分类精度，特别是在分类问题中评估观测分类结果与随机
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分类的一致程度。混淆矩阵，又称错误矩阵，是一种特别的

表格布局，用于可视化算法性能。它显示了实际类别与模型

预测类别之间的关系，其中每列代表预测的类别，每行代表

实际的类别。Kappa 系数基于混淆矩阵计算而来。在本研究

中，Kappa 系数用于评估随机森林模型分类结果的准确性。

通过比较不同特征的 Kappa 系数，研究旨在识别对分类精

度影响最大的特征，以优化特征选择过程。

3 结果与分析

3.1 单一特征与分类精度关系
对每个特征与土地利用类型（Land	Use	and	Land	Cover,	

LULC）分类标签之间的关系进行了详尽分析，计算每个特

征的 JM 距离。对于研究区的七种不同用地类型，分别计算

了各自的 JM 值，并求得这些值的平均数。随后，利用随机

森林算法进行了基于像素的分类，并获得相应的 Kappa 系

数，以此评估每个特征在分类任务中的有效性。分析结果显

示 Kappa 系数与 JM 平均值之间存在显著的正相关关系（相

关系数为 0.53）（图 1），这说明当特征的 JM 平均值较高时，

基于该特征的分类精度通常也较高。

然而，有趣的是，尽管特征 RI4XS 拥有最高的 JM 平

均值（详见图 2），其对应的 Kappa 系数却仅为 0.39。通过

进一步的研究发现，虽然 RI4XS 在区分水体方面表现出色

（精度达到 1），但在草地和林地的区分上效能有限，草地

分类精度为 0，林地分类精度仅为 0.07。这表明 RI4XS 在特

定土地类型（林地和灌木）的区分能力有限，导致整体分类

效果受限。相比而言，特征 SeLI 的 JM 平均值为 0.93，其 

Kappa 系数高达 0.79，相关系数也达到了 0.85，展现出极其

出色的分类效果。这进一步表明在特征选择过程中，不仅

要考虑特征的综合性能，还要考虑其区分不同类别的能力，

从而更精准地优化特征选择，提升土地利用分类的准确性和

效率。

图 1 kappa 值与特征 JM 平均值的关系

图 2 RI4XS JM 热力图
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进一步对每个特征与土地利用及土地覆盖（Land	Use	

and	Land	Cover,	LULC）分类标签之间的相关性进行了细致

的分析， 并计算每个特征与	LULC	分类标签之间相关性的

绝对值。与此同时，继续采用基于像素的随机森林分类方法，

并对由此产生的分类结果的 Kappa 系数进行了对比。分析

结果显示 Kappa 系数与各特征相关性绝对值之间存在一定

程度的正相关关系，相关系数达到了 0.45。这表明，在一定

程度上，特征与分类标签之间的相关性越高，基于该特征进

行分类的准确性也越高。然而，这种相关性的综合表现并不

如 JM 值。

3.2 特征数量与分类精度关系
为了深入理解不同特征组合对分类准确性的影响，本

研究采用逐步增加特征数量的方法 [21]。按照表 2 所示特征

的顺序（从上至下、从左至右），从单个特征开始，逐步增

加特征数量，每次增加一个特征，直到涵盖所有特征。每种

特征组合都被用于执行基于像素的随机森林分类任务，以此

来模拟并观察特征数量变化对分类结果的影响。每次分类的 

Kappa 系数被计算出来，作为评估分类准确度的关键指标。

通过对 Kappa 系数与特征数量之间的关系进行分析，

发现二者之间存在一定的关联。在特征数量较少时，随着特

征逐渐增加，Kappa 系数呈现出显著的正相关关系。这表明

在特征较少的初期阶段，每增加一个特征值都可能显著提升

分类的精度，因为新加入的特征为模型提供了额外有用的信

息，增强了分类器的判别能力。然而，随着特征数量的增加，

这种正相关关系开始变得不那么明显。当特征数量达到 207

时，Kappa 系数达到其最大值 0.9049。而在特征数量为 25

时，Kappa 系数达到了一个局部最优值 0.8689。当特征数量

增至全部的 208 个时，Kappa 系数略有下降，降至 0.9047。

如图 4 所示，当特征数量达到一定程度后，可能出现了一定

程度的冗余或过拟合现象，导致分类器在处理更多特征时效

率下降。

实验表明在特征选择过程中要注意平衡性，既要选择

足够的特征以提供必要信息，又要避免过多的特征导致的效

率下降或过拟合，以达到分类精度的最优化。通过筛选出最

具代表性和信息丰富的特征，能够有效减少模型处理的数据

量，从而降低计算机算力的负担。这样的优选框架有助于避

免模型处理不必要或冗余信息，预防过拟合的风险，并提高

模型对关键特征的响应灵敏度。

图 3 kappa 值与特征相关性绝对值的关系

图 4 kappa 值与特征数量的关系
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3.3 优选特征与分类精度
通 过 特 征 优 化， 精 选 了 BWDRVI、MSR、RI4X、

ARI、VHA、MNLI、TCARIOSAVI、OCVI、VVA、kEVI、

BAIM、TRRVI、WRI、MCARIOSAVI、PSRI、BRBA、

NSDSI1、mND705、GARI、MCARI、SR3、TCARI、

BAIS2 以及 BAI 这 24 个特征 [22]。这些特征因其高度的判别

力和相关性而被选中，它们共同构成了一个高效且强大的特

征集，确保了模型在处理复杂遥感数据时的高精度和高效

率。此外，这一特征集的 JM 平均值约为 2.00（见图 5），

进一步佐证了特征优化框架的有效性。通过这一框架，自动

化的提取了特征集，提高了分类的准确性。

优化后的特征集在研究区实现了 93.20% 的总体精度

（Overall Accuracy, OA）和 0.917 的 Kappa 系数（图 6），

优于 Tassi[15] 在同一区域采用随机森林像元分类方法所获得

的 82% 的 OA，也超过了其基于随机森林对象分类的 89.3%

的 OA。

图 5 优化特征集 JM 热力图

  

图 6 研究区分类与影像图
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4 讨论

本研究基于 Google Earth Engine（GEE）平台，通过结

合杰弗里斯 - 默特尔斯（Jeffries-Matusita,	JM）距离与相关

系数，构建了一个高效的自动化特征优化框架，显著提升了

土地利用分类任务的性能 [23]。这一研究成果不仅为遥感数

据的特征选择和分类精度提升提供了新的方法支持，也展示

了 GEE 平台在处理大规模地理空间数据方面的强大潜力。

通过实证量化了 JM 距离与土地覆盖分类精度的耦合关

系，发现 JM 平均值与 Kappa 系数之间存在显著的正相关关

系（相关系数为 0.53）。这一发现与 Sen et al. 的研究相呼应，

他们同样指出 JM 距离可以作为特征选择的有效工具 [5]。本

研究进一步证实了 JM 距离在评估特征可分离性方面的可靠

性，并通过动态 JM 阈值初筛高区分度特征，有效解决了维

度灾难问题。这种基于 JM 距离的特征初筛方法，不仅降低

了特征维度，还提高了分类精度和计算效率。

在特征优化过程中结合了相关性分析，通过剔除高

度相关的特征，降低了多重共线性的风险，提高了模型的

稳定性和解释性。这一做法与 Jeon and Oh 提出的 Hybrid-

Recursive Feature Elimination（H-RFE）方法中的相关性分

析步骤相似 [6]。本研究的方法更加自动化和高效，通过构建

“JM 距离初筛 + 相关性精筛”的双阶段框架，实现了特征

集的快速优化。这种结合 JM 距离和相关系数的特征优化方

法，不仅提升了遥感图像分类的精度，还增强了模型的解释

能力和计算效率。

本研究提出的基于 GEE 平台的自动化特征优化框 

架 [24]，为遥感数据的特征选择和分类精度提升提供了有效

的解决方案。通过实证分析和与前人研究的对比，验证了该

框架的有效性和可靠性。未来，可以进一步探索该框架在不

同地区和不同遥感数据源上的适用性，以及与其他特征选择

方法的结合使用，以推动遥感分类技术的不断发展。

5 结语

本研究基于 GEE 平台构建了一种结合概率距离和相关

系数的特征优化框架。通过该框架在研究区执行的土地利用

分类实验取得了显著的成果。实验证明即使是应用基础分类

算法，通过优化特征，获得更好的数据集，也能显著提高分

类精度。此外，还成功构建了一套简单实用的自动化特征优

化框架，不仅有效解决了特征选择的难题，提高了遥感图像

分类精度和计算效率。优化后的特征集不仅提升了遥感图像

分类的精度，还增强了计算效率和模型的解释能力。因此，

本研究证明了通过构建自动化的特征优选框架，在 GEE 平

台上可以实现更高效、更准确的数据分析。
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