基于“分解 - 预测 - 聚合”及 GA 优化的碳价格预测方法研究
DOI: http://dx.doi.org/10.12349/tie.v2i7.8098
Article ID: 8098
摘要
关键词
参考
Wang, Y., Qin, L., Wang, Q., Chen, Y., Yang, Q., Xing, L., & Ba, S. (2023). A novel deep learning carbon price short-term prediction model with dual-stage attention mechanism. Applied Energy, 347, 121380.
International Energy Agency. (2025). Energy and AI. IEA. https://www.iea.org/reports/energy-and-ai
Bisiotis, K., Christopoulos, D., & Tzougas, G. (2025). Forecasting carbon prices: A literature review. Journal of Forecasting. Advance online publication. https://doi.org/10.1002/for.70054
Byun, S., & Cho, H. (2013). Forecasting carbon futures volatility using GARCH models with energy volatilities. Energy Economics, 40, 207–221. https://doi.org/10.1016/j.eneco.2013.06.017
Liu, Y., Xiao, G., Chen, W., & Zheng, Z. (2023). A LSTM and GRU-based hybrid model in the cryptocurrency price prediction. In Proceedings of the ... (pp. ...). Springer. https://doi.org/10.1007/978-981-99-8104-5_3
Qin, Q., & Li, L. (2025). A VMD-based four-stage hybrid forecasting model with error correction for complex coal price series. Mathematics, 13(18), 2912. https://doi.org/10.3390/math13182912
Feng, W., Tao, R., Cartlidge, J., & Zheng, J. (2025). VMDNet: Time series forecasting with leakage-free samplewise variational mode decomposition and multibranch decoding. arXiv. https://arxiv.org/abs/2509.15394
Wu, S., & Cai, H. (2025). Short-term power load prediction of VMD-LSTM based on ISSA optimization. Applied Sciences, 15(9), 5037. https://doi.org/10.3390/app15095037
Yentes, J. M., Hunt, N., Schmid, K. K., Kaipust, J. P., McGrath, D., & Stergiou, N. (2013). The appropriate use of approximate entropy and sample entropy with short data sets. Annals of Biomedical Engineering,
(2), 349–365. https://doi.org/10.1007/s10439-012-0668-3
Esquivel-Cruz, E., Beltran-Carbajal, F., Rivas-Cambero, I., Arroyo-Núñez, J. H., Tapia-Olvera, R., & Guillen, D. (2025). Hybrid empirical and variational mode decomposition of vibratory signals. Algorithms, 18(1), 25. https://doi.org/10.3390/a18010025
Lahmiri, S. (2016). A variational mode decomposition approach for analysis and forecasting of economic and financial time series. Expert Systems with Applications, 55, 268–273. https://doi.org/10.1016/j.eswa.2016.02.025
Putra, H. R. K., Yudistira, N., & Fatyanosa, T. N. (2024). Variational mode decomposition and linear embeddings are what you need for time-series forecasting. arXiv. https://arxiv.org/abs/2408.16122
Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039–H2049. https://doi.org/10.1152/ajpheart.2000.278.6.H2039
Wright, A. (1999). Genetic algorithms for real parameter optimization. In Foundations of Genetic Algorithms (Vol. 1, pp. ...). Elsevier. https://doi.org/10.1016/B978-0-08-050684-5.50016-1
Boyabatlı, O., & Sabuncuoglu, I. (2004). Parameter selection in genetic algorithms. Journal of Systemics, Cybernetics and Informatics, 4(2), 78–83.
Chen, Y. (2024). Carbon price prediction for the European carbon market using generative adversarial networks. Modern Economy, 15, 219–232. https://doi.org/10.4236/me.2024.153011
Fan, Y., Tang, Q., Guo, Y., & Wei, Y. (2024). BiLSTM-MLAM: A multi-scale time series prediction model for sensor data based on Bi-LSTM and local attention mechanisms. Sensors, 24(12), 3962. https://doi.org/10.3390/s24123962
Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2019). The performance of LSTM and BiLSTM in forecasting time series. In 2019 IEEE International Conference on Big Data (Big Data) (pp. 3285–3292). IEEE. https://doi.org/10.1109/BigData47090.2019.9005997
Jiang, L., & Wu, P. (2015, November). International carbon market price forecasting using an integration model based on SVR. In Proceedings of the 2015 International Conference on Engineering Management, Engineering Education and Information Technology (pp. 303–308). Atlantis Press. https://doi.org/10.2991/emeeit-15.2015.61
De Rojas, A. L., Jaramillo-Morán, M. A., & Sandubete, J. E. (2024). EMDFormer model for time series forecasting. AIMS Mathematics, 9(7), 9419–9434. https://doi.org/10.3934/math.2024458
Mujiono, E. P. U. P., Mukhlash, I., Pradana, Y. A., Putri, E. R. M., & Irawan, M. I. (2025). Carbon price prediction by incorporating fossil fuel prices using long short-term memory with temporal pattern attention (TPA-LSTM). Science and Technology Indonesia, 10(3), 856–865. https://doi.org/10.26554/sti.2025.10.3.856-865
Refbacks
- 当前没有refback。
版权所有(c)2025 李 晶磊

此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。