基于双向 TCN-BiLSTM 的水培生菜冠层叶面积预测研究
DOI: http://dx.doi.org/10.12349/rwae.v6i1.5060
Article ID: 5060
摘要
关键词
全文:
PDF参考
计雪伟, 霍兴赢, 薛端, 等. 基于神经网络的农作物产量预测方法[J]. 南方农机, 2022, 53(02): 36-38.
Shabani E. Improving the growth, P uptake and quality characteristics of ‘Lollo Rosso’lettuce in the nutrient solution by Bacillus subtilis in different phosphorus concentrations[J]. Journal of Plant Nutrition, 2023, 46(6): 971-983.
Li Q, Gao H, Zhang X, et al. Describing Lettuce Growth Using Morphological Features Combined with Nonlinear Models[J]. Agronomy, 2022, 12(4): 860.
张向君, 陈优良, 肖钢. 基于机器学习的农作物产量预测研究综述[J]. 安徽农学通报, 2021, 27(03): 117-119+134.
周瑞, 魏正英, 张育斌, 等. 基于LSTM递归神经网络的番茄目标产量时间序列预测[J]. 节水灌溉, 2018, (08): 66-70.
Rizkiana A, Nugroho A P, Salma N M, et al. Plant growth prediction model for lettuce (Lactuca sativa.) in plant factories using artificial neural network[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 733(1): 012027.
Zhu H, Liu C, Wu H. A prediction method of seedling transplanting time with DCNN-LSTM based on the attention mechanism[J]. Agronomy, 2022, 12(7): 1504.
Moon T, Ahn T I, Son J E. Forecasting root-zone electrical conductivity of nutrient solutions in closed-loop soilless cultures via a recurrent neural network using environmental and cultivation information[J]. Frontiers in Plant Science, 2018, 9: 328105.
Refbacks
- 当前没有refback。
版权所有(c)2025 胡 飞, 肖 良成, 罗 玲, 龚 秀波, 张 英

此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。