基于 GEE 的土地利用分类特征优选研究
DOI: http://dx.doi.org/10.12349/rwae.v6i4.8612
Article ID: 8612
摘要
关键词
全文:
PDF参考
Gong, P., Liu, H., Zhang, M., et al. (2019). Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Science Bulletin, 64(18), 1354-1361.
Gao W, Hu L, Zhang P, et al. Feature selection considering the composition of feature relevancy[J]. Pattern Recognition Letters, 2018, 112: 70-74.
Kuzudisli C, Bakir-Gungor B, Bulut N, et al. Review of feature selection approaches based ongrouping of features[J]. PeerJ, 2023, 11: e15666.
Tateishi, R., & Oh, J. H. (2019). Global-scale land cover mapping using satellite imagery: A review and future perspectives. ISPRS Journal of Photogrammetry and Remote Sensing, 154, 120-135.
Sen R, Goswami S, Chakraborty B. Jeffries-Matusita distance as a tool for feature selection[C]//2019 International Conference on Data Science and Engineering (ICDSE). 2019: 15-20.
Jeon H, Oh S. Hybrid-Recursive Feature Elimination for Efficient Feature Selection[J]. AppliedSciences, 2020, 10(9): 3211.
Somers B, Asner G P. Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests[J]. Remote Sensing of Environment, 2013, 136: 14-27.
Hu Q, Sulla-Menashe D, Xu B, et al. A phenology-based spectral and temporal feature selection method for crop mapping from satellite time series[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 80: 218-229.
Chen L, Jin Z, Michishita R, et al. Dynamic monitoring of wetland cover changes using time-series remote sensing imagery[J]. Ecological Informatics, 2014, 24: 17-26.
Arvor D, Jonathan M, Meirelles M S P, et al. Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil[J]. International Journal of Remote Sensing, 2011, 32(22): 7847-7871.
Xu F, Xu Z, Xu C, et al. Automatic Extraction of the Spatial Distribution of Picea schrenkiana in the Tianshan Mountains Based on Google Earth Engine and the Jeffries–Matusita Distance[J]. Forests, 2023, 14(7): 1373.
宁晓刚, 常文涛, 王浩, 等. 联合GEE与多源遥感数据的黑龙江流域沼泽湿地信息提取[J]. 遥感学报, 2022, 26(2): 386-396.
Taheri Dehkordi A, Valadan Zoej M J, Ghasemi H, et al. Monitoring Long-Term Spatiotemporal Changes in Iran Surface Waters Using Landsat Imagery[J]. Remote Sensing, 2022, 14(18): 4491.
朱梦豪. 基于时序遥感影像多特征优选的作物分类方法[D]. 河南理工大学, 2021.
Tassi A, Vizzari M. Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms[J]. Remote Sensing, 2020, 12(22): 3776.
Dabboor M, Howell S, Shokr M, et al. The Jeffries–Matusita distance for the case of complex Wishart distribution as a separability criterion for fully polarimetric SAR data[J]. International Journal of Remote Sensing, 2014, 35(19): 6859-6873.
Swain, P. H., & Davis, S. M. (1978). Remote sensing for agriculture: The use of the Jeffries-Matusita distance for the selection of discriminant features for the classification of agriculturalcrops. IEEE Transactions on Geoscience and Remote Sensing, 16(3), 161-167.
Benesty J, Chen J, Huang Y, et al. Pearson Correlation Coefficient[M]//Cohen I, Huang Y, Chen J, et al. Noise Reduction in Speech Processing: Vol. 2. Berlin, Heidelberg: Springer BerlinHeidelberg, 2009: 1-4.
Breiman L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32.
Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random Forests for land cover classification. Pattern Recognition Letters, 27(4), 294-300.
Waske, B., & van der Linden, S. (2010). Classifying multispectral and hyperspectral data using feature extraction and feature selection methods. ISPRS Journal of Photogrammetry and Remote Sensing, 65(3), 257-272.
Guo, J., Liu, X., Du, S., et al. (2018). Feature selection for classification of hyperspectral imagery using improved ReliefF and particle swarm optimization. Remote Sensing, 10(6), 906.
Verrelst, J., Camps-Valls, G., Muñoz-Marí, J., et al. (2019). Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties–A review. ISPRS Journal of Photogrammetry and Remote Sensing, 150, 98-117.
Hansch, R., & Menz, G. (2020). Precision agriculture and digital farming: Concepts, challenges, and future trends. Agriculture, 10(4), 143.
Refbacks
- 当前没有refback。
版权所有(c)2026 范 欢, 李 锐, 姚 慧, 马 一, 侯 维海

此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。